我试图绘制2D数据集的计算特征向量,这里是我为此写的脚本:
clear ;
s = [2 2]
set = randn(200,1);
x = normrnd(s(1).*set,1)+3
x = zscore(x) % Standardize
y = normrnd(s(1).*set,1)+2
y= zscore(y)%Standardize
x_0 = mean(x)
y_0 = mean (y)
c = linspace(1,100,length(x)); % color
scatter(x,y,100,c,'filled')
xlabel('1st Feature : x')
ylabel('2nd Feature : y')
title('2D_dataset')
grid on
% gettign the covariance matrix
covariance = cov([x,y])
% getting the eigenvalues and the eigenwert
[eigen_vector, eigen_values] = eig(covariance)
eigen_value_1 = eigen_values(1,1)
eigen_vector_1 =eigen_vector(:,1)
eigen_value_2 = eigen_values(2,2)
eigen_vector_2 =eigen_vector(:,2)
% ploting the eigenvectors !
hold on
x_0 = repmat(x_0,size(eigen_vector_2,1),1);
y_0 = repmat(y_0,size(eigen_vector_1,1),1);
quiver(x_0, y_0,eigen_vector_2*(eigen_value_2),eigen_vector_1*(eigen_value_1),'-r','LineWidth',5)
这是我得到的结果:
我已经仔细检查了数学,数值是正确的,但情节是一团糟! 知道我在2个载体的图中缺少了什么吗? 提前致谢 !
答案 0 :(得分:1)
在您的代码中,替换此部分:
covariance = cov([x,y])
% getting the eigenvalues and the eigenwert
[eigen_vector, eigen_values] = eig(covariance)
eigen_value_1 = eigen_values(1,1)
eigen_vector_1 =eigen_vector(:,1)
eigen_value_2 = eigen_values(2,2)
eigen_vector_2 =eigen_vector(:,2)
% ploting the eigenvectors !
hold on
x_0 = repmat(x_0,size(eigen_vector_2,1),1);
y_0 = repmat(y_0,size(eigen_vector_1,1),1);
quiver(x_0, y_0,eigen_vector_2*(eigen_value_2),eigen_vector_1*(eigen_value_1),'-r','LineWidth',5)
使用以下代码:
covariance = cov([x,y]);
[eigen_vector, eigen_values] = eig(covariance);
eigen_vector_1 = eigen_vector(:,1);
eigen_vector_2 = eigen_vector(:,2);
d = sqrt(diag(eigen_values));
hold on;
quiver(x_0,y_0,eigen_vector(1,2),eigen_vector(2,2),d(2),'k','LineWidth',5);
quiver(x_0,y_0,eigen_vector(1,1),eigen_vector(2,1),d(1),'r','LineWidth',5);
hold off;
这会产生你想要的东西吗?它看起来更加连贯......
答案 1 :(得分:1)
您正在将一个特征向量的两个分量绘制为两个向量的x分量,将另一个特征向量绘制为y分量。
[eigen_vector, eigen_values] = eig(covariance)
eigen_x = eigen_vector(1,:);
eigen_y = eigen_vector(2,:);
scale = diag(eigen_vector)'; % not sure what the output orientation is
% ploting the eigenvectors !
hold on
x_0 = repmat(x_0,size(eigen_vector_2,1),1);
y_0 = repmat(y_0,size(eigen_vector_1,1),1);
quiver(x_0, y_0,eigen_x.*scale,eigen_y.*scale,'-r')
实际上,因为它们是正交的,所以以其他方式切割矩阵并没有太大变化。但是你的缩放正在改变向量的角度,而不仅仅是长度,因为我在上面提到过。