R:使用dplyr基于列值的子集data.frame

时间:2017-12-20 01:25:22

标签: r dataframe dplyr

library(dplyr)
mydat1 <- data.frame(ID = c(1, 1, 2, 2),
                    Gender = c("Male", "Female", "Male", "Male"),
                    Score = c(30, 40, 20, 60))
mydat1 %>%
  group_by(ID, Gender) %>%
  slice(which.min(Score))

# A tibble: 3 x 3
# Groups:   ID, Gender [3]
     ID Gender Score
  <dbl> <fctr> <dbl>
1     1 Female    40
2     1   Male    30
3     2   Male    20

我正在尝试按IDGender对行进行分组。然后我想只保留最低Score的行。上面的代码完美无缺,因为在ID == 2时,我只保留了得分较低的条目。

mydat2 <- data.frame(ID = c(1, 1, 2, 2),
                    Gender = c("Male", "Female", "Male", "Male"),
                    Score = c(NA, NA, 20, 60))

mydat2 %>%
  group_by(ID, Gender) %>%
  slice(which.min(Score))

# A tibble: 1 x 3
# Groups:   ID, Gender [1]
     ID Gender Score
  <dbl> <fctr> <dbl>
1     2   Male    20

然而,当我有NA时,which.min不能像我想要的那样工作,因为它不会返回有效的索引。相反,我的所有ID == 1条目都将被删除。在这种情况下我想要的输出是:

# A tibble: 1 x 3
# Groups:   ID, Gender [1]
     ID Gender Score
  <dbl> <fctr> <dbl>
1     1 Female    NA
2     1   Male    NA
1     2   Male    20

如何修改我的代码以解决此问题?

编辑:

df2 <- structure(list(pubmed_id = c(23091106L, 23091106L), Gender = structure(c(4L, 
                                                                                4L), .Label = c("", "Both", "female", "Female", "Male"), class = "factor"), 
                      Total_Carrier = c(NA, 1107)), class = c("grouped_df", "tbl_df", 
                                                              "tbl", "data.frame"), row.names = c(NA, -2L), vars = "pubmed_id", drop = TRUE, indices = list(
                                                                0:1), group_sizes = 2L, biggest_group_size = 2L, labels = structure(list(
                                                                  pubmed_id = 23091106L), class = "data.frame", row.names = c(NA, 
                                                                                                                              -1L), vars = "pubmed_id", drop = TRUE, .Names = "pubmed_id"), .Names = c("pubmed_id", 
                                                                                                                                                                                                       "Gender", "Total_Carrier"))

> df2
# A tibble: 2 x 3
# Groups:   pubmed_id [1]
  pubmed_id Gender Total_Carrier
      <int> <fctr>         <dbl>
1  23091106 Female            NA
2  23091106 Female          1107

在这个例子中,我希望所需的输出只包含第2行(即载波样本大小为1107的行)。但是,我得到以下结果:

> df2 %>%
   group_by(pubmed_id, Gender) %>%
   slice(which.min(Total_Carrier) || 1)

# A tibble: 1 x 3
# Groups:   pubmed_id, Gender [1]
  pubmed_id Gender Total_Carrier
      <int> <fctr>         <dbl>
1  23091106 Female            NA

4 个答案:

答案 0 :(得分:3)

which.min忽略缺失的值,并在输入向量仅包含integer(0)时返回NA。您可以在slice中添加条件检查,即当组中的所有分数都为NA时,请选择第一行:

mydat2 %>%
     group_by(ID, Gender) %>%
     slice({idx <- which.min(Score); if(length(idx) > 0) idx else 1})

# A tibble: 3 x 3
# Groups:   ID, Gender [3]
#     ID Gender Score
#  <dbl> <fctr> <dbl>
#1     1 Female    NA
#2     1   Male    NA
#3     2   Male    20

答案 1 :(得分:2)

您还可以使用arrange对群组中的分数进行排序,然后slice选择每个群组的第一行。这样,如果组中只有NA,您仍然会选择第一行:

mydat2 %>%
group_by(ID, Gender) %>%
arrange(ID,Gender,Score) %>%
slice(1)
     ID Gender Score
  <dbl> <fctr> <dbl>
1     1 Female    NA
2     1   Male    NA
3     2   Male    20

答案 2 :(得分:1)

以下是whichpmin

的另一个选项
mydat2 %>%
   group_by(ID, Gender) %>% 
   slice(pmin(1, which(Score == min(Score, na.rm = TRUE))[1], na.rm = TRUE))
# A tibble: 3 x 3
# Groups:   ID, Gender [3]
#      ID Gender Score
#   <dbl> <fctr> <dbl>
#1     1 Female    NA
#2     1   Male    NA
#3     2   Male    20

答案 3 :(得分:1)

使用data.table

的解决方案
library(data.table)
setDT(mydat2)
mydat2[, .(Score = sort(Score)[1]), by = .(ID, Gender)]
#    ID Gender Score
# 1:  1   Male    NA
# 2:  1 Female    NA
# 3:  2   Male    20