我正在尝试为一个热编码数据执行SGD分类。我对我的训练示例很满意,并且希望稍后在较少的数据上执行partial_fit。 我理解由于拟合数据和partial_fit数据之间的尺寸变化而引发的错误。
我也理解我需要对hot_new_df
执行数据转换,但我不确定如何。
IN [29] - 是我在做fit()
IN [32] - 是我在做partial_fit()
我刚刚在这里提出了一个假设的例子......我的实际数据是40K行和~200列的形状
Jupyter QtConsole 4.3.1
Python 3.6.2 |Anaconda custom (64-bit)| (default, Sep 21 2017, 18:29:43)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.
In [27]: import pandas as pd
...:
...: input_df = pd.DataFrame(dict(fruit=['Apple', 'Orange', 'Pine'],
...: color=['Red', 'Orange','Green'],
...: is_sweet = [0,0,1],
...: country=['USA','India','Asia'],
...: is_valid = ['Valid', 'Valid', 'Invalid']))
...: input_df
Out[27]:
color country fruit is_sweet is_valid
0 Red USA Apple 0 Valid
1 Orange India Orange 0 Valid
2 Green Asia Pine 1 Invalid
In [28]: hot_df = pd.get_dummies(input_df, columns=['fruit','color','country'])
...: hot_df
Out[28]:
is_sweet is_valid fruit_Apple fruit_Orange fruit_Pine color_Green \
0 0 Valid 1 0 0 0
1 0 Valid 0 1 0 0
2 1 Invalid 0 0 1 1
color_Orange color_Red country_Asia country_India country_USA
0 0 1 0 0 1
1 1 0 0 1 0
2 0 0 1 0 0
In [29]: from sklearn.linear_model import SGDClassifier
...: from sklearn.model_selection import train_test_split
...:
...: X_train, X_test, y_train, y_test = train_test_split(hot_df.drop(['is_valid'], axis=1),
...: hot_df['is_valid'],
...: test_size=0.1)
...: clf = SGDClassifier(loss="log", penalty="l2")
...: clf.fit(X_train, y_train)
...: clf
/Users/praj3/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:84: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.linear_model.stochastic_gradient.SGDClassifier'> in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3.
"and default tol will be 1e-3." % type(self), FutureWarning)
Out[29]:
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='log', max_iter=5, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)
In [30]: new_df = pd.DataFrame(dict(fruit=['Banana'],
...: color=['Red'],
...: is_sweet=[1],
...: country=['India'],
...: is_valid=['Invalid']))
...: new_df
Out[30]:
color country fruit is_sweet is_valid
0 Red India Banana 1 Invalid
In [31]: hot_new_df = pd.get_dummies(new_df, columns=['fruit','color','country'])
...: hot_new_df
Out[31]:
is_sweet is_valid fruit_Banana color_Red country_India
0 1 Invalid 1 1 1
In [32]: clf.partial_fit(hot_new_df.drop(['is_valid'], axis=1), hot_new_df['is_valid'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-32-088a54ade6f8> in <module>()
----> 1 clf.partial_fit(hot_new_df.drop(['is_valid'], axis=1), hot_new_df['is_valid'])
~/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py in partial_fit(self, X, y, classes, sample_weight)
543 learning_rate=self.learning_rate, max_iter=1,
544 classes=classes, sample_weight=sample_weight,
--> 545 coef_init=None, intercept_init=None)
546
547 def fit(self, X, y, coef_init=None, intercept_init=None,
~/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py in _partial_fit(self, X, y, alpha, C, loss, learning_rate, max_iter, classes, sample_weight, coef_init, intercept_init)
381 elif n_features != self.coef_.shape[-1]:
382 raise ValueError("Number of features %d does not match previous "
--> 383 "data %d." % (n_features, self.coef_.shape[-1]))
384
385 self.loss_function_ = self._get_loss_function(loss)
ValueError: Number of features 4 does not match previous data 10.
In [33]:
答案 0 :(得分:1)
您应该使用sklearn.preprocessing.OneHotEncoder
。可以找到here的文档。
在编码之前你的train_test_split然后使用将是这样的:
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
encoder.fit(X_train)
X_train = encoder.transform(X_train)
X_test = encoder.transform(X_test)
我希望这有帮助!