如果x
表示d
维列向量,e_i
表示欧几里德空间i
中的R^d
标准基础,我想计算python中的以下三阶张量以有效的方式:
这里,圆圈交叉是指张量外产品。目前我一直依赖以下效率很低的代码:
import numpy as np
from sktensor import ktensor,dtensor
d=5
x= np.random.normal(0,1,(d,1))
z= np.zeros((d,1))
I= np.identity(d)
T1= ktensor([x,x,x])
T2= ktensor([z,z,z])
T3= ktensor([z,z,z])
T4= ktensor([z,z,z])
for j in range(d):
T2 = T2+ ktensor([I(:,j),I(:,j),x]
T3 = T3+ ktensor([I(:,j),x,I(:,j)]
T4 = T4+ ktensor([x,I(:,j),I(:,j)]
T= T1-T2-T3-T4
答案 0 :(得分:1)
numpy
的回答。未针对sktensor
import numpy as np
np.random.seed(42)
d = 5
x = np.random.normal(0,1, size=(d,1))
I = np.identity(d)
ans = np.outer(x, np.outer(x, x))
for i in range(d):
ans -= np.outer(I[:, i], np.outer(I[:, i], x))
ans -= np.outer(I[:, i], np.outer(x, I[:, i]))
ans -= np.outer(x, np.outer(I[:, i], I[:, i]))