我有一个大小为X
且类型为(n, m)
的numpy数组np.uint8
(因此它只包含[0, 255]
中的值)。我还有从f
到[0, 255]
的映射[0, 3]
。
我想创建一个形状为Y
的数组(4, n, m)
,使其y_{k, i, j} = 1 if k == f(x_{i, j})
,否则为0。现在,我这样做:
Y = np.zeros((4, n, m))
for i in range(256):
Y[f(i), X == i] = 1
但这非常慢,而且我无法找到更有效的方法。有什么想法吗?
答案 0 :(得分:1)
假设f
可以一次性对所有迭代值进行操作,您可以使用broadcasting
-
Yout = (f(X) == np.arange(4)[:,None,None]).astype(int)
运行时测试和验证 -
In [35]: def original_app(X,n,m):
...: Y = np.zeros((4, n, m))
...: for i in range(256):
...: Y[f(i), X == i] = 1
...: return Y
...:
In [36]: # Setup Inputs
...: n,m = 2000,2000
...: X = np.random.randint(0,255,(n,m)).astype('uint8')
...: v = np.random.randint(4, size=(256,))
...: def f(x):
...: return v[x]
...:
In [37]: Y = original_app(X,n,m)
...: Yout = (f(X) == np.arange(4)[:,None,None]).astype(int)
...:
In [38]: np.allclose(Yout,Y) # Verify
Out[38]: True
In [39]: %timeit original_app(X,n,m)
1 loops, best of 3: 3.77 s per loop
In [40]: %timeit (f(X) == np.arange(4)[:,None,None]).astype(int)
10 loops, best of 3: 74.5 ms per loop
答案 1 :(得分:1)
标量索引和布尔值的混合似乎会损害您的速度:
In [706]: %%timeit
...: Y=np.zeros((4,3,4))
...: for i in range(256):
...: Y[f(i), X==i]+=1
...:
100 loops, best of 3: 12.5 ms per loop
In [722]: %%timeit
...: Y=np.zeros((4,3,4))
...: for i in range(256):
...: I,J=np.where(X==i)
...: Y[f(i),I,J] = 1
...:
100 loops, best of 3: 8.55 ms per loop
这是为了
X=np.arange(12,dtype=np.uint8).reshape(3,4)
def f(i):
return i%4
在这种情况下,f(i)
不是主要的时间消费者:
In [718]: timeit K=[f(i) for i in range(256)]
10000 loops, best of 3: 120 µs per loop
但获取X==i
索引的速度很慢
In [720]: timeit K=[X==i for i in range(256)]
1000 loops, best of 3: 1.29 ms per loop
In [721]: timeit K=[np.where(X==i) for i in range(256)]
100 loops, best of 3: 2.73 ms per loop
我们需要重新考虑映射的X==i
部分,而不是f(i)
部分。
=====================
展平最后2个尺寸有助于;
In [780]: %%timeit
...: X1=X.ravel()
...: Y=np.zeros((4,12))
...: for i in range(256):
...: Y[f(i),X1==i]=1
...: Y.shape=(4,3,4)
...:
100 loops, best of 3: 3.16 ms per loop