给定一个形状let result = temp1.reduce(function(res, obj) {
console.log(res, obj);
Object.keys(obj).forEach(function(k) {
res[k] = res[k] || [];
res[k] = res[k].concat(obj[k]);
});
return res;
}, []);
的数组我想为每个点选取一个大小为lodash
的补丁。
例如,如果
(N,2)
我设法只用一点来做,但我找不到一种聪明的方法来避免d x d
上的循环。这就是我所做的:
d = 3
points = [[3, 2], [1, 2]]
patchs = array([[[[2, 1],[3, 1],[4, 1]],
[[2, 2],[3, 2],[4, 2]],
[[2, 3],[3, 3],[4, 3]]], [[[0, 1],[1, 1],[2, 1]],
[[0, 2],[1, 2],[2, 2]],
[[0, 3],[1, 3],[2, 3]]]])
答案 0 :(得分:1)
这是一种利用broadcasting
进行分配的矢量化方法 -
hd = d//2 # half patch size
r = np.arange(-hd,hd+1)
out = np.empty((len(points),d,d,2), dtype=points.dtype)
out[...,0] = points[:,0,None,None] + r
out[...,1] = points[:,1,None,None] + r[:,None]
100万分的运行时测试 -
In [372]: points = np.random.randint(0,9,(1000000,2))
In [373]: %%timeit
...: hd = d//2 # half patch size
...: r = np.arange(-hd,hd+1)
...:
...: out = np.empty((len(points),d,d,2), dtype=points.dtype)
...: out[...,0] = points[:,0,None,None] + r
...: out[...,1] = points[:,1,None,None] + r[:,None]
10 loops, best of 3: 69.9 ms per loop