无法将形状(20,310,310)的输入数组广播成形状(20)

时间:2017-12-06 02:14:20

标签: python tensorflow

我正在尝试使用DICOM文件检测肺癌结节。癌症检测的主要步骤包括以下步骤。

1) Preprocessing
  * Converting the pixel values to Hounsfield Units (HU)
  * Resampling to an isomorphic resolution to remove variance in scanner resolution
  *Lung segmentation
2) Training the data set using preprocessed images in Tensorflow CNN
3) Testing and validation

我遵循了几个在线教程来做到这一点。

我需要在

中结合给定的解决方案

1)https://www.kaggle.com/gzuidhof/full-preprocessing-tutorial
2)https://www.kaggle.com/sentdex/first-pass-through-data-w-3d-convnet

我可以在第二个链接中实现这个例子。但由于缺乏良好的肺部分割和其他一些预处理步骤,我需要将链接一中的步骤与链接二结合起来。但是我在做这件事时遇到了很多错误。由于我是python的新手,有人可以帮我解决它。

有20个患者文件夹,每个患者文件夹都有多个切片,这些是dicom文件。

对于process_data方法,发送每个患者的slices_path和患者编号。

def process_data(slices,patient,labels_df,img_px_size,hm_slices):

try:
    label=labels_df.get_value(patient,'cancer')

    patient_pixels = get_pixels_hu(slices)

    segmented_lungs2, spacing = resample(patient_pixels, slices, [1,1,1])

    new_slices=[]

    segmented_lung = segment_lung_mask(segmented_lungs2, False)
    segmented_lungs_fill = segment_lung_mask(segmented_lungs2, True)
    segmented_lungs=segmented_lungs_fill-segmented_lung


    #This method returns smallest integer not less than x.
    chunk_sizes =math.ceil(len(segmented_lungs)/HM_SLICES)


    for slice_chunk in chunks(segmented_lungs,chunk_sizes):

            slice_chunk=list(map(mean,zip(*slice_chunk))) #list - []

            #print (slice_chunk)
            new_slices.append(slice_chunk)

    print(len(segmented_lungs), len(new_slices))

    if len(new_slices)==HM_SLICES-1:
            new_slices.append(new_slices[-1])

    if len(new_slices)==HM_SLICES-2:
            new_slices.append(new_slices[-1])
            new_slices.append(new_slices[-1])


    if len(new_slices)==HM_SLICES+2:
            new_val =list(map(mean, zip(*[new_slices[HM_SLICES-1],new_slices[HM_SLICES],])))
            del new_slices[HM_SLICES]
            new_slices[HM_SLICES-1]=new_val

    if len(new_slices)==HM_SLICES+1:
            new_val =list(map(mean, zip(*[new_slices[HM_SLICES-1],new_slices[HM_SLICES],])))
            del new_slices[HM_SLICES]
            new_slices[HM_SLICES-1]=new_val

    print('LENGTH ',len(segmented_lungs), len(new_slices))    
except Exception as e:
    # again, some patients are not labeled, but JIC we still want the error if something
    # else is wrong with our code
    print(str(e))


#print(len(new_slices))   

if label==1: label=np.array([0,1])
elif label==0: label=np.array([1,0])
return np.array(new_slices),label

主要方法

    # Some constants 
    #data_dir = '../../CT_SCAN_IMAGE_SET/IMAGES/'
    #patients = os.listdir(data_dir)
    #labels_df=pd.read_csv('../../CT_SCAN_IMAGE_SET/stage1_labels.csv',index_col=0)
    #patients.sort()
    #print (labels_df.head())

    much_data=[]
    much_data2=[]
    for num,patient in enumerate(patients):
        if num%100==0:
            print (num)

        try:

            slices = load_scan(data_dir + patients[num])
            img_data,label=process_data(slices,patients[num],labels_df,IMG_PX_SIZE,HM_SLICES)
            much_data.append([img_data,label])
            #much_data2.append([processed,label])
        except:
            print ('This is unlabeled data')

    np.save('muchdata-{}-{}-{}.npy'.format(IMG_PX_SIZE,IMG_PX_SIZE,HM_SLICES),much_data)
    #np.save('muchdata-{}-{}-{}.npy'.format(IMG_PX_SIZE,IMG_PX_SIZE,HM_SLICES),much_data2)

预处理部分工作正常,但是当我试图输入最终输出到卷积NN并训练数据集时,以下是我收到的错误,包括我提出的一些评论

    0
    shape hu
    (113, 512, 512)
    Resize factor
    [ 2.49557522  0.6015625   0.6015625 ]
    shape
    (282, 308, 308)
    chunk size 
    15
    282 19
    LENGTH  282 20
    Tensor("Placeholder:0", dtype=float32)
    ..........1.........
    ..........2.........
    ..........3.........
    ..........4.........
    WARNING:tensorflow:From C:\Research\Python_installation\lib\site-packages\tensorflow\python\util\tf_should_use.py:170: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
    Instructions for updating:
    Use `tf.global_variables_initializer` instead.
    ..........5.........
    ..........6.........
    Epoch 1 completed out of 20 loss: 0
    ..........7.........
    Traceback (most recent call last):
    File "C:\Research\LungCancerDetaction\sendbox2.py", line 436, in <module>
    train_neural_network(x)
    File "C:\Research\LungCancerDetaction\sendbox2.py", line 424, in train_neural_network
    print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] for i in validation_data]}))
    File "C:\Research\Python_installation\lib\site-packages\tensorflow\python\framework\ops.py", line 606, in eval
    return _eval_using_default_session(self, feed_dict, self.graph, session)
    File "C:\Research\Python_installation\lib\site-packages\tensorflow\python\framework\ops.py", line 3928, in _eval_using_default_session
    return session.run(tensors, feed_dict)
    File "C:\Research\Python_installation\lib\site-packages\tensorflow\python\client\session.py", line 789, in run
    run_metadata_ptr)
    File "C:\Research\Python_installation\lib\site-packages\tensorflow\python\client\session.py", line 968, in _run
    np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
    File "C:\Research\Python_installation\lib\site-packages\numpy\core\numeric.py", line 531, in asarray
    return array(a, dtype, copy=False, order=order)
    ValueError: could not broadcast input array from shape (20,310,310) into shape (20)

我认为这是'segmented_lungs = segmented_lungs_fill-segmented_lung'的问题

在工作示例中,

segmented_lungs=[cv2.resize(each_slice,(IMG_PX_SIZE,IMG_PX_SIZE)) for each_slice in patient_pixels]

请帮我解决这个问题。一段时间以后我无法继续。如果有什么不清楚请告诉我。

以下是尝试过的整个代码。

    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    import dicom
    import os
    import scipy.ndimage
    import matplotlib.pyplot as plt
    import cv2
    import math
    import tensorflow as tf


    from skimage import measure, morphology
    from mpl_toolkits.mplot3d.art3d import Poly3DCollection

     # Some constants 
    data_dir = '../../CT_SCAN_IMAGE_SET/IMAGES/'
    patients = os.listdir(data_dir)
    labels_df=pd.read_csv('../../CT_SCAN_IMAGE_SET/stage1_labels.csv',index_col=0)
    patients.sort()
    print (labels_df.head())

    #Image pixel array watching

    for patient in patients[:10]:
        #label is to get the label  of the patient. This is what done in the .get_value method.
        label=labels_df.get_value(patient,'cancer')
        path=data_dir+patient
        slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
        #You have dicom files and they have attributes. 
        slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))
        print (len(slices),slices[0].pixel_array.shape)

    #If u need to see many slices and resize the large pixelated 2D images into 150*150 pixelated images

    IMG_PX_SIZE=50
    HM_SLICES=20

    for patient in patients[:1]:
        #label is to get the label of the patient. This is what done in the .get_value method.
        label=labels_df.get_value(patient,'cancer')
        path=data_dir+patient
        slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
        #You have dicom files and they have attributes. 
        slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))
        #This shows the pixel arrayed image related to the second slice of each patient

        #subplot
        fig=plt.figure()
        for num,each_slice in enumerate(slices[:16]):
            print (num)
            y=fig.add_subplot(4,4,num+1)
            #down sizing everything. Resize the imag size as their pixel values are 512*512
            new_image=cv2.resize(np.array(each_slice.pixel_array),(IMG_PX_SIZE,IMG_PX_SIZE))
            y.imshow(new_image)
        plt.show()

    print (len(patients))

    ###################################################################################

    def get_pixels_hu(slices):
        image = np.array([s.pixel_array for s in slices])
        # Convert to int16 (from sometimes int16), 
        # should be possible as values should always be low enough (<32k)
        image = image.astype(np.int16)

        # Set outside-of-scan pixels to 0
        # The intercept is usually -1024, so air is approximately 0
        image[image == -2000] = 0

        # Convert to Hounsfield units (HU)
        for slice_number in range(len(slices)):

            intercept = slices[slice_number].RescaleIntercept
            slope = slices[slice_number].RescaleSlope

            if slope != 1:
                image[slice_number] = slope * image[slice_number].astype(np.float64)
                image[slice_number] = image[slice_number].astype(np.int16)

            image[slice_number] += np.int16(intercept)

        return np.array(image, dtype=np.int16)


    #The next problem is each patient is got different number of slices . This is a performance issue.
    # Take the slices and put that into a list of slices and chunk that list of slices into fixed numer of
    #chunk of slices and averaging those chunks.

    #yield is like 'return'. It returns a generator

    def chunks(l,n):
        for i in range(0,len(l),n):
            #print ('Inside yield')
            #print (i)
            yield l[i:i+n]

    def mean(l):
        return sum(l)/len(l)


    def largest_label_volume(im, bg=-1):
        vals, counts = np.unique(im, return_counts=True)

        counts = counts[vals != bg]
        vals = vals[vals != bg]

        if len(counts) > 0:
            return vals[np.argmax(counts)]
        else:
            return None


    def segment_lung_mask(image, fill_lung_structures=True):

        # not actually binary, but 1 and 2. 
        # 0 is treated as background, which we do not want
        binary_image = np.array(image > -320, dtype=np.int8)+1
        labels = measure.label(binary_image)


        # Pick the pixel in the very corner to determine which label is air.
        #   Improvement: Pick multiple background labels from around the patient
        #   More resistant to "trays" on which the patient lays cutting the air 
        #   around the person in half
        background_label = labels[0,0,0]
        #Fill the air around the person
        binary_image[background_label == labels] = 2

        # Method of filling the lung structures (that is superior to something like 
        # morphological closing)

        if fill_lung_structures:
            # For every slice we determine the largest solid structure

            for i, axial_slice in enumerate(binary_image):
                axial_slice = axial_slice - 1
                labeling = measure.label(axial_slice)
                l_max = largest_label_volume(labeling, bg=0)

                if l_max is not None: #This slice contains some lung
                    binary_image[i][labeling != l_max] = 1

        binary_image -= 1 #Make the image actual binary
        binary_image = 1-binary_image # Invert it, lungs are now 1
        # Remove other air pockets insided body
        labels = measure.label(binary_image, background=0)
        l_max = largest_label_volume(labels, bg=0)

        if l_max is not None: # There are air pockets
            binary_image[labels != l_max] = 0

        return binary_image


    #Loading the files
    #Load the scans in given folder path
    def load_scan(path):
        slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
        slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))
        try:
            slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
        except:
            slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)

        for s in slices:
            s.SliceThickness = slice_thickness

        return slices



    def resample(image, scan, new_spacing=[1,1,1]):
        # Determine current pixel spacing

        spacing = np.array([scan[0].SliceThickness] + scan[0].PixelSpacing, dtype=np.float32)


        resize_factor = spacing / new_spacing
        new_real_shape = image.shape * resize_factor
        new_shape = np.round(new_real_shape)
        real_resize_factor = new_shape / image.shape
        new_spacing = spacing / real_resize_factor

        print ('Resize factor')
        print (real_resize_factor)

        image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest')
        print ('shape')
        print (image.shape)

        return image, new_spacing

    '''def chunks(l,n):
        for i in range(0,len(l),n):
            #print ('Inside yield')
            #print (i)
            yield l[i:i+n]

    def mean(l):
        return sum(l)/len(l)'''

    #processing data
    def process_data(slices,patient,labels_df,img_px_size,hm_slices):
         #for patient in patients[:10]:
                #label is to get the label of the patient. This is what done in the .get_value method.
        try:
            label=labels_df.get_value(patient,'cancer')
            print ('label process data')
            print (label)
            #path=data_dir+patient
            #slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
            #You have dicom files and they have attributes. 
            slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))
            #This shows the pixel arrayed image related to the second slice of each patient
            patient_pixels = get_pixels_hu(slices)
            print ('shape hu')
            print (patient_pixels.shape)
            segmented_lungs2, spacing = resample(patient_pixels, slices, [1,1,1])
            #print ('Pix shape')
            #print (segmented_lungs2.shape)

            #segmented_lungs=np.array(segmented_lungs2).tolist()

            new_slices=[]

            segmented_lung = segment_lung_mask(segmented_lungs2, False)
            segmented_lungs_fill = segment_lung_mask(segmented_lungs2, True)
            segmented_lungs=segmented_lungs_fill-segmented_lung


            #print ('length of segmented lungs')
            #print (len(segmented_lungs))
            #print ('Shape of segmented lungs......................................')
            #print (segmented_lungs.shape)
            #print ('hiiii')
            #segmented_lungs=[cv2.resize(each_slice,(IMG_PX_SIZE,IMG_PX_SIZE)) for each_slice in segmented_lungs3]
            #print ('bye')
            #print ('length of slices')
            #print (len(slices))
            #print ('shape of slices')
            #print (slices.shape)


            #print (each_slice.pixel_array)

            #This method returns smallest integer not less than x.
            chunk_sizes =math.ceil(len(segmented_lungs)/HM_SLICES)

            print ('chunk size ')
            print (chunk_sizes)

            for slice_chunk in chunks(segmented_lungs,chunk_sizes):

                    slice_chunk=list(map(mean,zip(*slice_chunk))) #list - []

                    #print (slice_chunk)
                    new_slices.append(slice_chunk)

            print(len(segmented_lungs), len(new_slices))

            if len(new_slices)==HM_SLICES-1:
                    new_slices.append(new_slices[-1])

            if len(new_slices)==HM_SLICES-2:
                    new_slices.append(new_slices[-1])
                    new_slices.append(new_slices[-1])

            if len(new_slices)==HM_SLICES-3:
                    new_slices.append(new_slices[-1])
                    new_slices.append(new_slices[-1])
                    new_slices.append(new_slices[-1])

            if len(new_slices)==HM_SLICES+2:
                    new_val =list(map(mean, zip(*[new_slices[HM_SLICES-1],new_slices[HM_SLICES],])))
                    del new_slices[HM_SLICES]
                    new_slices[HM_SLICES-1]=new_val

            if len(new_slices)==HM_SLICES+1:
                    new_val =list(map(mean, zip(*[new_slices[HM_SLICES-1],new_slices[HM_SLICES],])))
                    del new_slices[HM_SLICES]
                    new_slices[HM_SLICES-1]=new_val

            if len(new_slices)==HM_SLICES+3:
                    new_val =list(map(mean, zip(*[new_slices[HM_SLICES-1],new_slices[HM_SLICES],])))
                    del new_slices[HM_SLICES]
                    new_slices[HM_SLICES-1]=new_val

            print('LENGTH ',len(segmented_lungs), len(new_slices))    
        except Exception as e:
            # again, some patients are not labeled, but JIC we still want the error if something
            # else is wrong with our code
            print(str(e))


        #print(len(new_slices))   

        if label==1: label=np.array([0,1])
        elif label==0: label=np.array([1,0])
        return np.array(new_slices),label



    # Some constants 
    #data_dir = '../../CT_SCAN_IMAGE_SET/IMAGES/'
    #patients = os.listdir(data_dir)
    #labels_df=pd.read_csv('../../CT_SCAN_IMAGE_SET/stage1_labels.csv',index_col=0)
    #patients.sort()
    #print (labels_df.head())

    much_data=[]
    much_data2=[]
    for num,patient in enumerate(patients):
        if num%100==0:
            print (num)

        try:

            slices = load_scan(data_dir + patients[num])
            img_data,label=process_data(slices,patients[num],labels_df,IMG_PX_SIZE,HM_SLICES)
            much_data.append([img_data,label])
            #much_data2.append([processed,label])
        except:
            print ('This is unlabeled data')

    np.save('muchdata-{}-{}-{}.npy'.format(IMG_PX_SIZE,IMG_PX_SIZE,HM_SLICES),much_data)
    #np.save('muchdata-{}-{}-{}.npy'.format(IMG_PX_SIZE,IMG_PX_SIZE,HM_SLICES),much_data2)

    IMG_SIZE_PX = 50
    SLICE_COUNT = 20

    n_classes=2
    batch_size=10

    x = tf.placeholder('float')
    y = tf.placeholder('float')

    keep_rate = 0.8

    def conv3d(x, W):
        return tf.nn.conv3d(x, W, strides=[1,1,1,1,1], padding='SAME')

    def maxpool3d(x):
        #                        size of window         movement of window as you slide about
        return tf.nn.max_pool3d(x, ksize=[1,2,2,2,1], strides=[1,2,2,2,1], padding='SAME')

    def convolutional_neural_network(x):
        #                # 5 x 5 x 5 patches, 1 channel, 32 features to compute.
        weights = {'W_conv1':tf.Variable(tf.random_normal([3,3,3,1,32])),
                   #       5 x 5 x 5 patches, 32 channels, 64 features to compute.
                   'W_conv2':tf.Variable(tf.random_normal([3,3,3,32,64])),
                   #                                  64 features
                   'W_fc':tf.Variable(tf.random_normal([54080,1024])),
                   'out':tf.Variable(tf.random_normal([1024, n_classes]))}

        biases = {'b_conv1':tf.Variable(tf.random_normal([32])),
                   'b_conv2':tf.Variable(tf.random_normal([64])),
                   'b_fc':tf.Variable(tf.random_normal([1024])),
                   'out':tf.Variable(tf.random_normal([n_classes]))}

        #                            image X      image Y        image Z
        x = tf.reshape(x, shape=[-1, IMG_SIZE_PX, IMG_SIZE_PX, SLICE_COUNT, 1])

        conv1 = tf.nn.relu(conv3d(x, weights['W_conv1']) + biases['b_conv1'])
        conv1 = maxpool3d(conv1)


        conv2 = tf.nn.relu(conv3d(conv1, weights['W_conv2']) + biases['b_conv2'])
        conv2 = maxpool3d(conv2)

        fc = tf.reshape(conv2,[-1, 54080])
        fc = tf.nn.relu(tf.matmul(fc, weights['W_fc'])+biases['b_fc'])
        fc = tf.nn.dropout(fc, keep_rate)

        output = tf.matmul(fc, weights['out'])+biases['out']

        return output


    much_data = np.load('muchdata-50-50-20.npy')
    # If you are working with the basic sample data, use maybe 2 instead of 100 here... you don't have enough data to really do this
    train_data = much_data[:-4]
    validation_data = much_data[-4:]


    def train_neural_network(x):
        print ('..........1.........')
        prediction = convolutional_neural_network(x)
        print ('..........2.........')
        #cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
        cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
        print ('..........3.........')
        optimizer = tf.train.AdamOptimizer(learning_rate=1e-3).minimize(cost)
        print ('..........4.........')
        hm_epochs = 20
        with tf.Session() as sess:
            sess.run(tf.initialize_all_variables())

            successful_runs = 0
            total_runs = 0
            print ('..........5.........')
            for epoch in range(hm_epochs):
                epoch_loss = 0
                for data in train_data:
                    total_runs += 1
                    try:
                        X = data[0]
                        Y = data[1]
                        _, c = sess.run([optimizer, cost], feed_dict={x: X, y: Y})
                        epoch_loss += c
                        successful_runs += 1
                    except Exception as e:
                        # I am passing for the sake of notebook space, but we are getting 1 shaping issue from one 
                        # input tensor. Not sure why, will have to look into it. Guessing it's
                        # one of the depths that doesn't come to 20.
                        pass
                        #print(str(e))
                print ('..........6.........')
                print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:',epoch_loss)
                print ('..........7.........')
                correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
                accuracy = tf.reduce_mean(tf.cast(correct, 'float'))

                print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] for i in validation_data]}))

            print('Done. Finishing accuracy:')
            print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] for i in validation_data]}))

            print('fitment percent:',successful_runs/total_runs)


    print (x)


    # Run this locally:
    train_neural_network(x)

P.S:resample(),segment_lung_mask()方法可以从链接1找到。

2 个答案:

答案 0 :(得分:4)

对于培训,你有

for data in train_data:
    total_runs += 1
    try:
        X = data[0]
        Y = data[1]
        _, c = sess.run([optimizer, cost], feed_dict={x: X, y: Y})

因此,x和y分别是单行train_data的前两个元素。

但是,在计算准确度时

print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] for i in validation_data]}))

因此x是{em>所有行validation_data的第一个元素,它给出了(20,310,310)的维度,不能将其广播到维度{{的占位符1}}。同上y。 (广播意味着如果你给它一个尺寸(20)的张量,它就会知道将310列中的每一列分别送到占位符。它无法弄清楚如何处理张量为{{ 1}}。)

顺便说一下,当您声明占位符时,最好指定其维度,使用(20, 310)作为维度,具体取决于单独示例的数量。这样,程序可以在尺寸不匹配时发出警告。

答案 1 :(得分:1)

错误消息似乎表明尚未正确定义占位符张量xy。它们的形状应与输入值X = data[0]Y = data[1]相同,例如

x = tf.placeholder(shape=[20,310,310], dtype=tf.float32)
# if y is a scalar:
y = tf.placeholder(shape=[], dtype=tf.float32)