如果你们都有更高效或更优雅的方式将事件日志转换为时间序列,那就太好了。
并不是那么整齐的中心,但好奇你是否有一个漂亮的整齐方法心灵?我试图利用dplyr :: mutate的滞后函数在值为NA时进行前瞻性观察,但我似乎无法重复滞后。
这是一个简单的例子
library(dplyr)
set.seed(1)
events <- tibble(
t = runif(10, 0, 100) %>% sort(),
value = runif(10, 0, 1)
)
events
# A tibble: 10 x 2
t value
<dbl> <dbl>
1 6.178627 0.2059746
2 20.168193 0.1765568
3 26.550866 0.6870228
4 37.212390 0.3841037
5 57.285336 0.7698414
6 62.911404 0.4976992
7 66.079779 0.7176185
8 89.838968 0.9919061
9 90.820779 0.3800352
10 94.467527 0.7774452
这是一种超级黑客的做法。 时间序列事件:
accordian <- function(events_data, freq = 1){
t_seq = seq(
from = min(events_data$t)-freq %>% round(0),
to = max(events_data$t) + freq,
by = freq)
timeseries = tibble(
t = t_seq,
value = NA
)
timeseries = bind_rows(
events_data,
timeseries
) %>%
arrange(t)
for (i in 2:length(timeseries$value)){
if (is.na(timeseries$value[i])){ timeseries$value[i] = timeseries$value[i-1] }
}
timeseries = timeseries %>%
filter(t %in% t_seq)
return(timeseries)
}
accordian(events)
# A tibble: 102 x 3
t value type
<dbl> <dbl> <chr>
1 6.178627 0.2059746 events log
2 20.168193 0.1765568 events log
3 26.550866 0.6870228 events log
4 37.212390 0.3841037 events log
5 57.285336 0.7698414 events log
6 62.911404 0.4976992 events log
7 66.079779 0.7176185 events log
8 89.838968 0.9919061 events log
9 90.820779 0.3800352 events log
10 94.467527 0.7774452 events log
# ... with 92 more rows
并根据事件日志明确事件日志和时间序列之间的区别:
library(ggplot2)
bind_rows(
events %>%
mutate(type = "events log"),
accordian(events) %>%
mutate(type = "time series"),
) %>%
ggplot(
aes(x = t, y = value, color = type)
) +
geom_line()
我很想得到你的建议!
答案 0 :(得分:0)
这不是您问题的答案,但根据您的评论,我想向您展示我的基础R方法。也许我们可以把它翻译成一个整齐的解决方案:
async_to_sync <- function(async_df) {
# Creates a synchronous (multivariate) time series from an asynchronous event log.
# It is assumed the asynchronous log contains no missing values.
# creates simple time sequence, could be modified to have a different freuency
time_sequence <- seq(min(async_df$time), max(async_df$time), by = 1)
# constructing a new empty dataframe:
sync_df <- data.frame(matrix(ncol = ncol(async_df), nrow = length(time_sequence)))
colnames(sync_df) <- colnames(async_df)
sync_df$time <- time_sequence
# Fill in already known values in the synchronous time series:
for(i in 1:nrow(async_df)) {
time_value <- async_df$time[i]
sync_df[which(sync_df$time == time_value, arr.ind = TRUE), ] <- async_df[i, ]
}
# Filling in the blanks:
for(i in 1:nrow(sync_df)) {
if(sync_df[i, ] %>% is.na %>% any) {
sync_df[i, ] <- sync_df[i - 1, ]
}
}
return(sync_df)
}
在示例上运行:
> set.seed(1234)
> async_df <- data.frame(time = c(2, 6, 7, 14), x1 = LETTERS[1:4], x2 = 1:4, stringsAsFactors = FALSE)
> async_df
time x1 x2
1 2 A 1
2 6 B 2
3 7 C 3
4 14 D 4
> async_to_sync(async_df = async_df)
time x1 x2
1 2 A 1
2 2 A 1
3 2 A 1
4 2 A 1
5 6 B 2
6 7 C 3
7 7 C 3
8 7 C 3
9 7 C 3
10 7 C 3
11 7 C 3
12 7 C 3
13 14 D 4