如何获得pandas数据帧的索引范围

时间:2017-11-28 19:32:53

标签: python pandas

获取相应列内容满足条件的索引范围的最有效方法是什么?例如以tag开头并以" body"结尾的行。标签

例如,数据框看起来像这样

我想得到行索引1-3

有人能建议用这种方法来实现这个目标吗?

Parse.Cloud.define("iOSPush", function (request, response) {

console.log("Inside iOSPush");

var data            =   request.params.data;
var not_class       =   request.params.not_class;
var not_objectid    =   request.params.not_objectid;
var not_date        =   request.params.not_date;
var userid          =   request.params.userid;
var recipientUser   =   new Parse.Query(Parse.User);
recipientUser.equalTo("objectId", userid);

//  set installation query:

var pushQuery       =   new Parse.Query(Parse.Installation);
pushQuery.equalTo('deviceType', 'ios');
pushQuery.matchesQuery('user', recipientUser);
pushQuery.find({ useMasterKey: true }).then(function(object) {
    response.success(object);
    console.log("pushQuery got " + object.length);
}, function(error) {
    response.error(error);
    console.error("pushQuery find failed. error = " + error.message);
});

//  send push notification query:

Parse.Push.send({
    where: pushQuery,
    data: data
}, { useMasterKey: true }).then(function() {

    console.log("### push sent!");

    //  create notification:
    var notification = {
        "title": not_class,
        "body": request.params.data.alert,
        "class": not_class,
        "objectId": not_objectid,
        "date": not_date
    };

    //  get notifications:
    var tmp_notifications = recipientUser.get("notifications");

    //  add notification:
    tmp_notifications.push(notification);

    //  update with notifications:
    recipientUser.set("notifications", tmp_notifications);
    recipientUser.save();

}, function(error) {
    console.error("### push error" + error.message);
});

response.success('success. end of iospush');

});

1 个答案:

答案 0 :(得分:0)

您还可以找到开始行和结束行的索引,然后在它们之间添加行以获取之间的所有内容

start_index = df[df['description'].str.contains("<body>")==True].index[0]
end_index = df[df['description'].str.contains("</body>")==True].index[0]

print(df["description"][start_index:end_index+1].sum())