我最初的问题是关于Python下的并行性。然而,由于问题仍然没有答案我删除了它,我试图总结我的结论。希望它会帮助某人......
通常,有两种主要方法可以使代码并行运行 - 使用多线程或多处理库。
根据 stackoverflow.com上的许多帖子 多线程库能够跨线程有效地共享内存,但在单核上运行线程。因此,如果瓶颈是I / O操作,它可以加速您的代码。我不确定图书馆是否有很多现实生活中的申请......
如果您的代码是CPU密集型的(有时称为CPU限制),多处理库可以解决您的问题。该库将线程分布在各个核心上。然而,许多人(包括我)观察到这样的多核代码可能明显慢于其单核对应物。这个问题应该是由于各个线程无法有效共享内存这一事实造成的 - 数据被广泛复制,这会产生相当大的开销。正如下面的代码所示,开销很大程度上取决于输入数据类型。问题是在Windows上比在Linux上更深刻。我不得不说并行性是我最大的Python失望 - 显然Python并没有考虑并行性而设计......
第一段代码使用pandas dataframe
在核心之间分配Process
。
import numpy as np
import math as mth
import pandas as pd
import time as tm
import multiprocessing as mp
def bnd_calc_npv_dummy(bnds_info, core_idx, npv):
""" multiple core dummy valuation function (based on single core function) """
bnds_no = len(bnds_info)
tm.sleep(0.0001 * bnds_no)
npv[core_idx] = np.array(bnds_info['npv'])
def split_bnds_info(bnds_info, cores_no):
""" cut dataframe with bond definitions into pieces - one piece per core """
bnds_info_mp = []
bnds_no = len(bnds_info)
batch_size = mth.ceil(np.float64(bnds_no) / cores_no) # number of bonds allocated to one core
# split dataframe among cores
for idx in range(cores_no):
lower_bound = int(idx * batch_size)
upper_bound = int(np.min([(idx + 1) * batch_size, bnds_no]))
bnds_info_mp.append(bnds_info[lower_bound : upper_bound].reset_index().copy())
# return list of dataframes
return bnds_info_mp
def bnd_calc_npv(bnds_info, cores_no):
""" dummy valuation function running multicore """
manager = mp.Manager()
npv = manager.dict()
bnds_info_mp = split_bnds_info(bnds_info, cores_no)
processes = [mp.Process(target = bnd_calc_npv_dummy, args = (bnds_info_mp[core_idx], core_idx, npv)) for core_idx in xrange(cores_no)]
[process.start() for process in processes]
[process.join() for process in processes]
# return NPV of individual bonds
return np.hstack(npv.values())
if __name__ == '__main__':
# create dummy dataframe
bnds_no = 1200 # number of dummy in the sample
bnds_info = {'currency_name' : 'EUR', 'npv' : 100}
bnds_info = pd.DataFrame(bnds_info, index = range(1))
bnds_info = pd.concat([bnds_info] * bnds_no, ignore_index = True)
# one core
print("ONE CORE")
start_time = tm.time()
bnds_no = len(bnds_info)
tm.sleep(0.0001 * bnds_no)
npv = np.array(bnds_info['npv'])
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# two cores
print("TWO CORES")
cores_no = 2
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# three cores
print("THREE CORES")
cores_no = 3
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# four cores
print("FOUR CORES")
cores_no = 4
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
第二个代码与之前的代码相同 - 唯一的区别是这次我们使用numpy array
代替pandas dataframe
而且性能差异很大(比较单核的运行时更改)多核的运行时间变化。)
import numpy as np
import math as mth
import time as tm
import multiprocessing as mp
def bnd_calc_npv_dummy(bnds_info, core_idx, npv):
""" multiple core dummy valuation function (based on single core function) """
bnds_no = len(bnds_info)
tm.sleep(0.0001 * bnds_no)
npv[core_idx] = bnds_info
def split_bnds_info(bnds_info, cores_no):
""" cut dataframe with bond definitions into pieces - one piece per core """
bnds_info_mp = []
bnds_no = len(bnds_info)
batch_size = mth.ceil(np.float64(bnds_no) / cores_no) # number of bonds allocated to one core
# split dataframe among cores
for idx in range(cores_no):
lower_bound = int(idx * batch_size)
upper_bound = int(np.min([(idx + 1) * batch_size, bnds_no]))
bnds_info_mp.append(bnds_info[lower_bound : upper_bound])
# return list of dataframes
return bnds_info_mp
def bnd_calc_npv(bnds_info, cores_no):
""" dummy valuation function running multicore """
manager = mp.Manager()
npv = manager.dict()
bnds_info_mp = split_bnds_info(bnds_info, cores_no)
processes = [mp.Process(target = bnd_calc_npv_dummy, args = (bnds_info_mp[core_idx], core_idx, npv)) for core_idx in xrange(cores_no)]
[process.start() for process in processes]
[process.join() for process in processes]
# return NPV of individual bonds
return np.hstack(npv.values())
if __name__ == '__main__':
# create dummy dataframe
bnds_no = 1200 # number of dummy in the sample
bnds_info = np.array([100] * bnds_no)
# one core
print("ONE CORE")
start_time = tm.time()
bnds_no = len(bnds_info)
tm.sleep(0.0001 * bnds_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# two cores
print("TWO CORES")
cores_no = 2
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# three cores
print("THREE CORES")
cores_no = 3
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# four cores
print("FOUR CORES")
cores_no = 4
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
最后一段代码使用Pool
代替Process
。运行时间略好一些。
import numpy as np
import time as tm
import multiprocessing as mp
#import pdb
#pdb.set_trace()
def bnd_calc_npv_dummy(bnds_info):
""" multiple core dummy valuation function (based on single core function) """
try:
# get number of bonds
bnds_no = len(bnds_info)
except:
pass
bnds_no = 1
tm.sleep(0.0001 * bnds_no)
return bnds_info
def bnd_calc_npv(bnds_info, cores_no):
""" dummy valuation function running multicore """
pool = mp.Pool(processes = cores_no)
npv = pool.map(bnd_calc_npv_dummy, bnds_info.tolist())
# return NPV of individual bonds
return npv
if __name__ == '__main__':
# create dummy dataframe
bnds_no = 1200 # number of dummy in the sample
bnds_info = np.array([100.0] * bnds_no)
# one core
print("ONE CORE")
start_time = tm.time()
bnds_no = len(bnds_info)
tm.sleep(0.0001 * bnds_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# two cores
print("TWO CORES")
cores_no = 2
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# three cores
print("THREE CORES")
cores_no = 3
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
# four cores
print("FOUR CORES")
cores_no = 4
start_time = tm.time()
npv = bnd_calc_npv(bnds_info, cores_no)
elapsed_time = (tm.time() - start_time)
print(' elapsed time: ' + str(elapsed_time) + 's')
所以,我的结论是并行的Python实现不适用于现实生活(我使用Python 2.7.13和Window 7)。 最好的问候,
麦基
PS:如果有人能够改变代码,我会更乐意改变主意...
答案 0 :(得分:1)
当可以独立计算问题的某些部分时,多处理效果最佳,例如使用multiprocessing.Pool
。
池中的每个工作进程都处理输入的一部分,并将结果返回给主进程。
如果所有进程都需要修改整个输入数组的数据,那么manager
的同步化开销可能会破坏多处理的任何增益。