我正在尝试通过Tensorflow会话使用Keras模型。但结果与model.predict
和sess.run
不同。有没有办法通过Tensorflow会话使用Kers模型?
Tensorflow版本:1.4.0
Keras版本:2.1.1
from sklearn.datasets.samples_generator import make_circles
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
import numpy as np
import tensorflow as tf
from keras import backend as K
sess = tf.Session()
K.tensorflow_backend.set_session(sess)
X, y = make_circles(n_samples=1000,
noise=0.1,
factor=0.2,
random_state=0)
model = Sequential()
model.add(Dense(4, input_shape=(2,), activation='tanh'))
model.add(Dense(1, activation='sigmoid'))
model.compile(SGD(lr=0.5), 'binary_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=20)
print("Keras model. First prediction: " + str(model.predict(np.c_[0, 0])))
print("Keras model. Second prediction: " + str(model.predict(np.c_[1.5, 1.5])))
with sess.as_default():
y_tensor = model.outputs[0]
x_tensor = model.inputs[0]
sess.run(tf.global_variables_initializer())
print("TF model. First prediction: " + str(sess.run(y_tensor, feed_dict={x_tensor: np.c_[0, 0]} )))
print("TF model. Second prediction: " + str(sess.run(y_tensor, feed_dict={x_tensor: np.c_[1.5, 1.5]} )))
答案 0 :(得分:6)
好的,它是K.set_session(s)
而不是K.tensorflow_backend.set_session(s)
。
第二:sess.run(tf.global_variables_initializer())
使用各自的初始化程序重置所有变量,包括网络权重(默认使用xavier
初始化程序)。
所以你是:
- 训练keras模型
- 打印keras模型的预测
- 重新设定为随机权重
- 打印相同型号的预测
醇>
评论sess.run(tf.global_variables_initializer())
可解决问题:
Keras model. First prediction: [[ 0.99195099]]
Keras model. Second prediction: [[ 0.03110269]]
TF model. First prediction: [[ 0.99195099]]
TF model. Second prediction: [[ 0.03110269]]