我有以下数据框包含几个项目的现金流量。例如:
test <- data.frame(ID = c(rep("A",3), rep("B",4)),
time = c("y3","y2","y1","y4","y3","y2","y1"),
Cfs= c(rep(1,3),rep(2,4)),
interest = c(rep(0.1,3),rep(0.05,4)))
ID time CFs interest
A y3 1 0.1
A y2 1 0.1
A y1 1 0.1
B y4 2 0.05
B y3 2 0.05
B y2 2 0.05
B y1 2 0.05
我想在每个项目的每个时间点产生净现值,因此最终输出应该如下所示:
ID time CFs interest NPV
A y3 1 0.1 2.487
A y2 1 0.1 1.736
A y1 1 0.1 0.909
B y4 2 0.05 7.092
B y3 2 0.05 5.446
B y2 2 0.05 3.719
B y1 2 0.05 1.905
我能够通过阅读一些旧帖来计算每个项目的总现金流的净现值,但我不知道在每个时间段如何做到这一点。此外,由于实际数据集非常大(300k +),我也试图避免循环。
由于
答案 0 :(得分:1)
您可能会发现其中一些辅助函数很有用
dcf <- function(x, r, t0=FALSE){
# calculates discounted cash flows (DCF) given cash flow and discount rate
#
# x - cash flows vector
# r - vector or discount rates, in decimals. Single values will be recycled
# t0 - cash flow starts in year 0, default is FALSE, i.e. discount rate in first period is zero.
if(length(r)==1){
r <- rep(r, length(x))
if(t0==TRUE){r[1]<-0}
}
x/cumprod(1+r)
}
npv <- function(x, r, t0=FALSE){
# calculates net present value (NPV) given cash flow and discount rate
#
# x - cash flows vector
# r - discount rate, in decimals
# t0 - cash flow starts in year 0, default is FALSE
sum(dcf(x, r, t0))
}
现在,我们可以应用dplyr
library(dplyr)
test %>% mutate_if(is.factor, as.character) %>%
arrange(ID, time) %>%
group_by(ID) %>%
mutate(DCF=cumsum(dcf(x=Cfs, r=interest)))
#> # A tibble: 7 x 5
#> # Groups: ID [2]
#> ID time Cfs interest DCF
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 A y1 1 0.10 0.9090909
#> 2 A y2 1 0.10 1.7355372
#> 3 A y3 1 0.10 2.4868520
#> 4 B y1 2 0.05 1.9047619
#> 5 B y2 2 0.05 3.7188209
#> 6 B y3 2 0.05 5.4464961
#> 7 B y4 2 0.05 7.0919010