我的目标:我希望删除在特定列中具有NaN的行。我会允许NaN存在于某些列而不是其他列。 英语示例:如果' detail_age'的值连续是NaN,我想删除该行。
以下是我的数据视图:
import pandas as pd
df = pd.read_csv('allDeaths.csv', index_col=0, nrows=3, engine='python')
print(df.shape)
print(list(df))
哪个输出:
(3,15)
['education_1989_revision', 'education_2003_revision',
'education_reporting_flag', 'sex', 'detail_age', 'marital_status',
'current_data_year', 'injury_at_work', 'manner_of_death', 'activity_code',
'place_of_injury_for_causes_w00_y34_except_y06_and_y07_', '358_cause_recode',
'113_cause_recode', '39_cause_recode', 'race']
当我尝试使用以下内容删除列的值为NaN的行时:
df.dropna(subset=[2,3,4,5,6,7,8,9,11,12,13,14], axis=1, inplace=True, how='any')
我收到以下错误:
Traceback (most recent call last):
File "clean.py", line 10, in <module>
df.dropna(subset=[2,3,4,5,6,7,8,9,11,12,13,14], axis=1, inplace=True, how='any')
File "/usr/local/lib/python3.4/dist-packages/pandas/core/frame.py", line 3052, in dropna
raise KeyError(list(np.compress(check, subset)))
KeyError: [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14]
这很奇怪,因为这有效:
df.dropna(subset=[2], axis=1, inplace=True, how='any')
但不是这样:
df.dropna(subset=[5], axis=1, inplace=True, how='any')
因此,某些列或这些列中的值必定存在问题。以下是使用df.head(3)查看我的数据:
答案 0 :(得分:2)
演示:
In [360]: df
Out[360]:
A B C D
0 1.0 2.0 NaN 4
1 5.0 NaN 7.0 8
2 NaN 10.0 11.0 12
3 13.0 14.0 15.0 16
In [362]: df = df.dropna(subset=df.columns[[1,2]], how='any')
In [363]: df
Out[363]:
A B C D
2 NaN 10.0 11.0 12
3 13.0 14.0 15.0 16
PS当然你可以改为指定列名:
In [370]: df.dropna(subset=['B','C'], how='any')
Out[370]:
A B C D
2 NaN 10.0 11.0 12
3 13.0 14.0 15.0 16