检查失败:状态== CUDNN_STATUS_SUCCESS(3对0)CUDNN_STATUS_BAD_PARAM用于更快的RCNN库

时间:2017-11-17 02:14:39

标签: deep-learning caffe pycaffe

我正在测试Faster Rcnn。安装很好。 在安装过程中,我遇到了cudnn5.1的一个问题,我遵循了建议here,现在安装正常。

现在我将演示代码测试为

./tools/demo.py

然后我有错误

I1117 09:48:41.011925 12503 net.cpp:51] Initializing net from parameters: 
name: "VGG_ILSVRC_16_layers"
state {
  phase: TEST
  level: 0
}
.
.
.
layer {
  name: "cls_prob"
  type: "Softmax"
  bottom: "cls_score"
  top: "cls_prob"
}
I1117 09:48:41.012234 12503 layer_factory.hpp:77] Creating layer input
I1117 09:48:41.012251 12503 net.cpp:84] Creating Layer input
I1117 09:48:41.012259 12503 net.cpp:380] input -> data
I1117 09:48:41.012271 12503 net.cpp:380] input -> im_info
I1117 09:48:41.328574 12503 net.cpp:122] Setting up input
I1117 09:48:41.328608 12503 net.cpp:129] Top shape: 1 3 224 224 (150528)
I1117 09:48:41.328614 12503 net.cpp:129] Top shape: 1 3 (3)
I1117 09:48:41.328618 12503 net.cpp:137] Memory required for data: 602124
I1117 09:48:41.328624 12503 layer_factory.hpp:77] Creating layer conv1_1
I1117 09:48:41.328655 12503 net.cpp:84] Creating Layer conv1_1
I1117 09:48:41.328660 12503 net.cpp:406] conv1_1 <- data
I1117 09:48:41.328670 12503 net.cpp:380] conv1_1 -> conv1_1
F1117 09:48:41.676553 12503 cudnn.hpp:128] Check failed: status == CUDNN_STATUS_SUCCESS (3 vs. 0)  CUDNN_STATUS_BAD_PARAM
*** Check failure stack trace: ***
Aborted (core dumped)

我为这个更快的rcnn安装有什么问题?

我在Ubuntu16.04上安装了cuda8.0和libcudnn5_5.1.10-1 + cuda8.0。 我有Qurdo K4200显卡。

1 个答案:

答案 0 :(得分:0)

现在它对我有用。由于libcudnn5_5.1适用于CUDA7.5。可以在GPU和驱动程序要求下查看cudnn的用户指南。所以我为CUDA8.0改为cudnnv6.0。

然后你可能面临

的问题
Check failed: error == cudaSuccess (8 vs. 0)  invalid device function

为此您需要py-faster-rcnn / lib / fast_rcnn / config.py并更改

__C.USE_GPU_NMS = True

to 
__C.USE_GPU_NMS = False

然后它现在有效。