核心 - ARM Cortex-M4
编译器 - GCC 5.3.0 ARM EABI
OS - 免费RTOS
我正在使用gcc库函数进行堆栈回溯_Unwind_Reason_Code _Unwind_Backtrace(_Unwind_Trace_Fn,void *);
在我们的项目中,MSP堆栈用于异常处理。在其他情况下,使用PSP堆栈。当我在异常处理程序中调用_Unwind_Backtrace()时,我能够正确地追溯到第一个在异常内部调用的函数。在此之前,堆栈是MSP。
但在例外之前,我们无法追溯。此时,使用的堆栈是PSP。
例如:假设
Task1
{
func1()
}
func1
{
func2()
}
func2
{
an exception occurs here
}
**Inside Exception**
{
func1ex()
}
func1ex
{
func2ex()
}
func2ex
{
unwind backtrace()
}
展开回溯能够回溯到func1ex()但无法回溯路径task1 - > func1 - > func2
由于在异常期间PSP与MSP堆栈之间存在切换,因此无法回溯使用PSP的函数。
在控制到异常处理程序之前,寄存器R0,R1,R2,R3,LR,PC和XPSR由核心堆叠在PSP中。我能够看到这一点。但我不知道如何使用这个堆栈帧为PSP做回溯。
在这种情况下,有人可以告诉我们该做什么,以便我们可以追溯到任务级别吗?
谢谢,
阿斯温。
答案 0 :(得分:0)
这是可行的,但需要访问libgcc如何实现_Unwind_Backtrace函数的内部细节。幸运的是,代码是开源的,但依赖于这些内部细节是很脆弱的,因为它可能会在未来版本的armgcc中破坏而没有任何通知。
通常,通过读取libgcc的源进行回溯,它会创建CPU核心寄存器的内存虚拟表示,然后使用此表示向上移动堆栈,模拟异常抛出。 _Unwind_Backtrace做的第一件事就是从当前的CPU寄存器填充这个上下文,然后调用内部实现函数。
在堆叠异常结构中手动创建该上下文足以在大多数情况下伪造从处理程序模式向上通过调用堆栈的回溯。以下是一些示例代码(来自https://github.com/bakerstu/openmrn/blob/62683863e8621cef35e94c9dcfe5abcaf996d7a2/src/freertos_drivers/common/cpu_profile.hxx#L162):
/// This struct definition mimics the internal structures of libgcc in
/// arm-none-eabi binary. It's not portable and might break in the future.
struct core_regs
{
unsigned r[16];
};
/// This struct definition mimics the internal structures of libgcc in
/// arm-none-eabi binary. It's not portable and might break in the future.
typedef struct
{
unsigned demand_save_flags;
struct core_regs core;
} phase2_vrs;
/// We store what we know about the external context at interrupt entry in this
/// structure.
phase2_vrs main_context;
/// Saved value of the lr register at the exception entry.
unsigned saved_lr;
/// Takes registers from the core state and the saved exception context and
/// fills in the structure necessary for the LIBGCC unwinder.
void fill_phase2_vrs(volatile unsigned *fault_args)
{
main_context.demand_save_flags = 0;
main_context.core.r[0] = fault_args[0];
main_context.core.r[1] = fault_args[1];
main_context.core.r[2] = fault_args[2];
main_context.core.r[3] = fault_args[3];
main_context.core.r[12] = fault_args[4];
// We add +2 here because first thing libgcc does with the lr value is
// subtract two, presuming that lr points to after a branch
// instruction. However, exception entry's saved PC can point to the first
// instruction of a function and we don't want to have the backtrace end up
// showing the previous function.
main_context.core.r[14] = fault_args[6] + 2;
main_context.core.r[15] = fault_args[6];
saved_lr = fault_args[5];
main_context.core.r[13] = (unsigned)(fault_args + 8); // stack pointer
}
extern "C"
{
_Unwind_Reason_Code __gnu_Unwind_Backtrace(
_Unwind_Trace_Fn trace, void *trace_argument, phase2_vrs *entry_vrs);
}
/// Static variable for trace_func.
void *last_ip;
/// Callback from the unwind backtrace function.
_Unwind_Reason_Code trace_func(struct _Unwind_Context *context, void *arg)
{
void *ip;
ip = (void *)_Unwind_GetIP(context);
if (strace_len == 0)
{
// stacktrace[strace_len++] = ip;
// By taking the beginning of the function for the immediate interrupt
// we will attempt to coalesce more traces.
// ip = (void *)_Unwind_GetRegionStart(context);
}
else if (last_ip == ip)
{
if (strace_len == 1 && saved_lr != _Unwind_GetGR(context, 14))
{
_Unwind_SetGR(context, 14, saved_lr);
allocator.singleLenHack++;
return _URC_NO_REASON;
}
return _URC_END_OF_STACK;
}
if (strace_len >= MAX_STRACE - 1)
{
++allocator.limitReached;
return _URC_END_OF_STACK;
}
// stacktrace[strace_len++] = ip;
last_ip = ip;
ip = (void *)_Unwind_GetRegionStart(context);
stacktrace[strace_len++] = ip;
return _URC_NO_REASON;
}
/// Called from the interrupt handler to take a CPU trace for the current
/// exception.
void take_cpu_trace()
{
memset(stacktrace, 0, sizeof(stacktrace));
strace_len = 0;
last_ip = nullptr;
phase2_vrs first_context = main_context;
__gnu_Unwind_Backtrace(&trace_func, 0, &first_context);
// This is a workaround for the case when the function in which we had the
// exception trigger does not have a stack saved LR. In this case the
// backtrace will fail after the first step. We manually append the second
// step to have at least some idea of what's going on.
if (strace_len == 1)
{
main_context.core.r[14] = saved_lr;
main_context.core.r[15] = saved_lr;
__gnu_Unwind_Backtrace(&trace_func, 0, &main_context);
}
unsigned h = hash_trace(strace_len, (unsigned *)stacktrace);
struct trace *t = find_current_trace(h);
if (!t)
{
t = add_new_trace(h);
}
if (t)
{
t->total_size += 1;
}
}
/// Change this value to runtime disable and enable the CPU profile gathering
/// code.
bool enable_profiling = 0;
/// Helper function to declare the CPU usage tick interrupt.
/// @param irq_handler_name is the name of the interrupt to declare, for example
/// timer4a_interrupt_handler.
/// @param CLEAR_IRQ_FLAG is a c++ statement or statements in { ... } that will
/// be executed before returning from the interrupt to clear the timer IRQ flag.
#define DEFINE_CPU_PROFILE_INTERRUPT_HANDLER(irq_handler_name, CLEAR_IRQ_FLAG) \
extern "C" \
{ \
void __attribute__((__noinline__)) load_monitor_interrupt_handler( \
volatile unsigned *exception_args, unsigned exception_return_code) \
{ \
if (enable_profiling) \
{ \
fill_phase2_vrs(exception_args); \
take_cpu_trace(); \
} \
cpuload_tick(exception_return_code & 4 ? 0 : 255); \
CLEAR_IRQ_FLAG; \
} \
void __attribute__((__naked__)) irq_handler_name(void) \
{ \
__asm volatile("mov r0, %0 \n" \
"str r4, [r0, 4*4] \n" \
"str r5, [r0, 5*4] \n" \
"str r6, [r0, 6*4] \n" \
"str r7, [r0, 7*4] \n" \
"str r8, [r0, 8*4] \n" \
"str r9, [r0, 9*4] \n" \
"str r10, [r0, 10*4] \n" \
"str r11, [r0, 11*4] \n" \
"str r12, [r0, 12*4] \n" \
"str r13, [r0, 13*4] \n" \
"str r14, [r0, 14*4] \n" \
: \
: "r"(main_context.core.r) \
: "r0"); \
__asm volatile(" tst lr, #4 \n" \
" ite eq \n" \
" mrseq r0, msp \n" \
" mrsne r0, psp \n" \
" mov r1, lr \n" \
" ldr r2, =load_monitor_interrupt_handler \n" \
" bx r2 \n" \
: \
: \
: "r0", "r1", "r2"); \
} \
}
此代码旨在使用计时器中断获取CPU配置文件,但可以从任何处理程序(包括故障处理程序)重用回溯展开。从底部到顶部阅读代码:
__naked__
定义IRQ函数非常重要,否则GCC的函数入口标题将以不可预测的方式操纵CPU的状态,例如修改堆栈指针。