Tensorflow - ValueError:Shape必须为0级,但对于'range'(op:'Range')的'limit'为1,输入形状为:[],[10],[]

时间:2017-11-16 02:10:03

标签: python machine-learning tensorflow neural-network conv-neural-network

我正在学习如何建立一个简单的神经网络 按照Mo先生的教程,我逐步编写代码:

"in:0"

然而,我收到错误:

from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob:1})
    return result

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME')

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1,28,28,1])

## conv1 layer ##
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
## conv2 layer ##
W_conv2=weight_variable([5,5,32,64])
b_conv2=bias_variable([64])
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)
## func1 layer ##
W_fc1=weight_variable([7*7*64,1024]) 
b_fc1=bias_variable([1024])
#[n_samples,7,7,64]->>[n_samples,7*7*64]
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
## func2 layer ##
W_fc2=weight_variable([1024,10]) 
b_fc2=bias_variable([10])
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2),b_fc2)
# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(
            mnist.test.images[:1000], mnist.test.labels[:1000]))

我发现了一些类似的问题及其解决方案。例如,“你宣称学习率为1D Tesnor,而它应该是标量”。不幸的是,我不知道它的实际含义或如何解决我的问题。

提前非常感谢你!

1 个答案:

答案 0 :(得分:1)

在这一行:

prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2), b_fc2)

应该是:

prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)