我正在尝试运行下面的代码,并向我抛出此错误:“形状必须为0,但输入形状为[0]的'file_reader'(op:'ReadFile')的排名为1”。我试图从我的目录中读取jpeg格式的图像列表,然后将它们一个接一个地分类。任何帮助将不胜感激!
代码:
class image_recognition_algorithm():
def __init__(self, file_name, model_file, label_file):
self.model_file = model_file
self.label_file = label_file
self.file_name = file_name
def load_graph(self):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(self, file_name, input_height=299, input_width=299,
input_mean=128, input_std=128):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0);
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(self, label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
def main(self, file_name):
self.model_file = "tf_files/retrained_graph.pb"
self.label_file = "tf_files/retrained_labels.txt"
self.input_height = 299
self.input_width = 299
self.input_mean = 128
self.input_std = 128
input_layer = "Mul"
output_layer = "final_result"
graph = self.load_graph()
t = self.read_tensor_from_image_file(file_name,
input_height = self.input_height,
input_width = self.input_width,
input_mean = self.input_mean,
input_std = self.input_std)
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name);
output_operation = graph.get_operation_by_name(output_name);
config = tf.ConfigProto(device_count={"CPU": 4},
inter_op_parallelism_threads=1,
intra_op_parallelism_threads=4)
self.sess = tf.Session(graph=graph, config=config)
start = time.time()
results = self.sess.run(output_operation.outputs[0],
{input_operation.outputs[0]: t})
end=time.time()
results = np.squeeze(results)
top_k = results.argsort()[-5:][::-1]
labels = load_labels(label_file)
print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start))
for i in top_k:
print(file_name, labels[i], results[i])
if __name__ == '__main__':
model_file = "tf_files/retrained_graph.pb"
label_file = "tf_files/retrained_labels.txt"
list_of_imgs = []
img_dir = "./test_images/"
for img in os.listdir("."):
img = os.path.join(img_dir, img)
a = cv2.imread(img)
if img.lower().endswith(".jpg"):
list_of_imgs.append(a.flatten())
file_name = np.array(list_of_imgs)
image_recognition_algorithm_obj =
image_recognition_algorithm(model_file, label_file, file_name)
image_recognition_algorithm_obj.main(file_name)
答案 0 :(得分:0)
由于向tf.read_file
函数提供了一个numpy数组,所以您收到此错误。
您需要为每个图像名称调用tf.read_file
作为字符串。
就像在tf.read_file
的{{3}}中所说的那样,输入filename: A Tensor of type string.
样品用量:
file_reader = tf.read_file("test.jpeg", "file_reader")