我建立了一个带回归的神经网络,用于预测保险数据。我的损失函数取很高的值(如123000)并减少unitl 30000;我的准确度一直保持在1.我处于过度拟合的状态?
在Traing集中,我使用正则化drpout来避免过度拟合的情况
这是代码:
##########
#Parameters
##########
learning_rate = 0.001
training_epochs = 150
#Session 2
batch_size = 1000
display_step = 1
total_len = train_x.shape[0]
# Network Parameters
n_hidden_1 = 150 # 1st layer number of features
n_hidden_2 = 150 # 2nd layer number of features
#n_hidden_3 = 150
#n_hidden_4 = 150
n_input = train_x.shape[1]
n_classes = 1
###############
#tf Graph input
###############
x = tf.placeholder("float", [None, train_x.shape[1]])
y = tf.placeholder("float", [None,n_classes])
keep_prob = tf.placeholder(tf.float32)
#######
#Model
#######
####
#Dropout
####
def multilayer_perceptron_drop(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# DROP-OUT
drop_out_1 = tf.nn.dropout(layer_1, keep_prob)
# Hidden layer with RELU activation
#layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.add(tf.matmul(drop_out_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# DROP-OUT
drop_out_2 = tf.nn.dropout(layer_2, keep_prob)
# Hidden layer with RELU activation
#layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
#layer_3 = tf.nn.relu(layer_3)
# Hidden layer with RELU activation
#layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
#layer_4 = tf.nn.relu(layer_4)
# Output layer with linear activation
out_layer = tf.matmul(drop_out_2, weights['out']) + biases['out']
return out_layer
#################
# Without dropout
#################
def multilayer_perceptron_test(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
##################################
#Definizione layers weight & bias
##################################
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0,0.01, dtype=tf.float32)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0,0.1,dtype=tf.float32)),
#'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
#'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], 0, 0.1,dtype=tf.float32))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], 0,0.1,dtype=tf.float32)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], 0,0.1,dtype=tf.float32)),
#'b3': tf.Variable(tf.random_normal([n_hidden_3])),
#'b4': tf.Variable(tf.random_normal([n_hidden_4])),
'out': tf.Variable(tf.random_normal([n_classes], 0, 0.1,dtype=tf.float32))
}
pred_drop = multilayer_perceptron_drop(x, weights, biases)
pred_test = multilayer_perceptron_test(x, weights, biases)
#####
#MSE
#####
cost = tf.reduce_mean(tf.square(pred_drop-y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
cost_test = tf.reduce_mean(tf.square(pred_test-y))
optimizer_test = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost_test)
#Accuracy
correct_prediction = tf.equal(tf.argmax(pred_drop, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
correct_prediction_test = tf.equal(tf.argmax(pred_test, 1), tf.argmax(y, 1))
accuracy_test = tf.reduce_mean(tf.cast(correct_prediction_test, "float"))