计算相对于层的输入的损耗的偏导数连锁规则|蟒蛇

时间:2017-11-08 12:05:03

标签: python machine-learning deep-learning differential-equations derivative

此分配的任务是计算相对于图层输入的损耗的偏导数。您必须实施链规则。

我很难理解如何设置功能。任何建议或提示将不胜感激!

功能变量的示例数据位于底部。



def dense_grad_input(x_input, grad_output, W, b):
    """Calculate the partial derivative of 
        the loss with respect to the input of the layer
    # Arguments
        x_input: input of a dense layer - np.array of size `(n_objects, n_in)`
        grad_output: partial derivative of the loss functions with 
            respect to the ouput of the dense layer 
            np.array of size `(n_objects, n_out)`
        W: np.array of size `(n_in, n_out)`
        b: np.array of size `(n_out,)`
    # Output
        the partial derivative of the loss with 
        respect to the input of the layer
        np.array of size `(n_objects, n_in)`
    """

    #################
    ### YOUR CODE ###
    #################
    return grad_input  






#x_input

[[ 0.29682018  0.02620921  0.03910291  0.31660917  0.6809823   0.67731154
   0.85846755  0.96218481  0.90590621  0.72424189  0.33797153  0.68878736
   0.78965605  0.23509894  0.7241181   0.28966239  0.31927664  0.85477801]
 [ 0.9960161   0.4369152   0.89877488  0.78452364  0.22198744  0.04382131
   0.4169376   0.69122887  0.25566736  0.44901459  0.50918353  0.8193029
   0.29340534  0.46017931  0.64337706  0.63181193  0.81610792  0.45420877]
 [ 0.24633573  0.1358581   0.07556498  0.85105726  0.99732196  0.00668041
   0.61558841  0.22549151  0.20417495  0.90856472  0.43778948  0.5179694
   0.77824586  0.98535274  0.37334145  0.77306608  0.84054839  0.59580074]
 [ 0.68575595  0.48426868  0.17377837  0.5779052   0.7824412   0.14172426
   0.93237195  0.71980057  0.04890449  0.35121393  0.67403124  0.71114348
   0.32314314  0.84770232  0.10081962  0.27920494  0.52890886  0.64462433]
 [ 0.35874758  0.96694283  0.374106    0.40640907  0.59441666  0.04155628
   0.57434682  0.43011294  0.55868019  0.59398029  0.22563919  0.39157997
   0.31804255  0.63898075  0.32462043  0.95516196  0.40595824  0.24739606]]

#grad_output

[[ 0.30650667  0.66195042  0.32518952  0.68266843  0.16748198]
 [ 0.87112224  0.66131922  0.03093839  0.61508666  0.21811778]
 [ 0.95191614  0.70929627  0.42584023  0.59418774  0.75341628]
 [ 0.32523626  0.90275084  0.3625107   0.52354435  0.23991962]
 [ 0.89248732  0.55744782  0.02718998  0.82430586  0.73937504]]

#W

 [[ 0.8584596   0.28496554  0.6743653   0.81776177  0.28957213]
 [ 0.96371309  0.19263171  0.78160551  0.07797744  0.21341943]
 [ 0.5191679   0.02631223  0.37672431  0.7439749   0.53042904]
 [ 0.1472284   0.46261313  0.18701797  0.17023813  0.63925535]
 [ 0.6169004   0.43381192  0.93162705  0.62511267  0.45877614]
 [ 0.30612274  0.39457724  0.26087929  0.34826782  0.71235394]
 [ 0.66890267  0.70557853  0.48098531  0.76937604  0.10892615]
 [ 0.17080091  0.57693496  0.19482135  0.07942299  0.7505965 ]
 [ 0.61697062  0.1725569   0.21757211  0.64178749  0.41287085]
 [ 0.96790726  0.22636129  0.38378524  0.02240361  0.08083711]
 [ 0.67933     0.34274892  0.55247312  0.06602492  0.75212193]
 [ 0.00522951  0.49808998  0.83214543  0.46631055  0.48400103]
 [ 0.56771735  0.70766078  0.27010417  0.73044053  0.80382   ]
 [ 0.12586939  0.18685427  0.66328521  0.84542463  0.7792    ]
 [ 0.21744701  0.90146876  0.67373118  0.88915982  0.5605676 ]
 [ 0.71208837  0.89978603  0.34720491  0.79784756  0.73914921]
 [ 0.48384807  0.10921725  0.81603026  0.82053322  0.45465871]
 [ 0.56148353  0.31003923  0.39570321  0.7816182   0.23360955]]

#b

[ 0.10006862  0.36418521  0.56036054  0.32046732  0.57004243]




1 个答案:

答案 0 :(得分:2)

它就像

一样简单
def dense_grad_input(x_input, grad_output, W, b):
  return grad_output.dot(W.T)

公式是通过矩阵乘法的反向传播误差信号。可以找到派生here。请注意,它不依赖于损失函数,仅取决于来自下一层grad_output的错误信号。

另请注意,反向传播还需要找到与Wb相关的渐变。