关于mxnet的Guon教程中的简单示例对我们刚开始使用mxnet的人非常有帮助。到目前为止,还没有一个简单的模型并行性示例。我看到了LSTM的模型并行性示例代码,但我是mxnet的新手,它可以帮助我(也许还有其他人)有一个更简化的例子。所以,我通过在胶子教程中处理回归示例,并混合了mxnet.gluon.Trainer中的一些代码,创建了一个模型并行性示例。
然而,我显然错了。渐变似乎没有更新。任何人都可以通过识别问题来协助吗?这里的目标是创建一个具有三个层的线性回归模型,每个层都保存在不同的gpu上。模型本身没有用,除了作为一个示例,展示了在使用自定义块和命令式编程时如何对模型并行性进行初始化和训练。
据我所知,Trainer()是为数据并行而编写的。它不适用于模型并行性,因为它需要在所有GPU上初始化所有参数。
import os
import numpy as np
import mxnet as mx
from mxnet import nd, autograd, gluon
from mxnet.gluon import Block
# make some data
num_inputs = 2
num_outputs = 1
num_examples = 10000
def real_fn(X):
return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2
X = np.random.normal(0,1, (num_examples, num_inputs))
noise = 0.001 * np.random.normal(0,1, (num_examples))
y = real_fn(X) + noise
y = y.reshape(-1,1)
# configuration
hidden_layers = 2
num_gpus = hidden_layers + 1
ctxList = [mx.gpu(i) for i in range(num_gpus)]
#ctxList = [mx.gpu() for i in range(num_gpus)]
#os.environ["MXNET_ENGINE_TYPE"] = "NaiveEngine"
print("\n")
# ======================================================================
class myDenseBlock(Block):
"""
A custom layer
"""
def __init__(self, layer_number, size_input, size_output, **kwargs):
super(myDenseBlock, self).__init__(**kwargs)
self.layer_number = layer_number
self.size_input = size_input
self.size_output = size_output
with self.name_scope():
# add parameters to the Block's ParameterDict.
self.w = self.params.get(
'weight',
init= mx.init.Xavier(magnitude=2.24),
shape=(size_input, size_output),
grad_req = 'write')
self.b = self.params.get(
'bias',
init= mx.init.Constant(0.5),
shape=(size_output,),
grad_req = 'write')
def forward(self, x):
x = x.as_in_context(ctxList[self.layer_number])
with x.context:
linear = nd.dot(x, self.w.data()) + self.b.data()
return linear
# ======================================================================
# create net
net = gluon.nn.Sequential()
with net.name_scope():
# initial layer, with X as input
net.add(myDenseBlock(0,
size_input = 2,
size_output = 2))
for ii in range(hidden_layers-1):
net.add(myDenseBlock(ii+1,
size_input = 2,
size_output = 2))
# final block, Y is nx1
net.add(myDenseBlock(ii+2,
size_input = 2,
size_output = 1))
# ititialize paramerters for different blocks (layers) on different gpus.
params = net.collect_params()
"""
The parameters are:
sequential0_mydenseblock0_weight
sequential0_mydenseblock0_bias
sequential0_mydenseblock1_weight
sequential0_mydenseblock1_bias
sequential0_mydenseblock2_weight
sequential0_mydenseblock2_bias
"""
print("\ninitializing:")
for i, param in enumerate(params):
if 'mydenseblock0' in param:
params[param].initialize(ctx=ctxList[0])
elif 'mydenseblock1' in param:
params[param].initialize(ctx=ctxList[1])
elif 'mydenseblock2' in param:
params[param].initialize(ctx=ctxList[2])
print(" ", i, param, " ", params[param].list_data()[0].context)
print("\n")
def square_loss(yhat, y):
return nd.mean((yhat - y) ** 2)
def mytrainer(updaters, params, ignore_stale_grad=False):
#print("\n")
for i, param in enumerate(params):
#print(i, param, " ", len(params[param].list_data()), params[param].list_data()[0].context)
if params[param].grad_req == 'null':
continue
if not ignore_stale_grad:
for data in params[param].list_data():
if not data._fresh_grad:
print(
"`%s` on context %s has not been updated"%(params[param].name, str(data.context)))
assert False
for upd, arr, grad in zip(updaters, params[param].list_data(), params[param].list_grad()):
if not ignore_stale_grad or arr._fresh_grad:
upd(i, grad, arr)
arr._fresh_grad = False
#print ("grad= ", grad)
batch_size = 100
epochs = 100000
iteration = -1
opt = mx.optimizer.create('adam', learning_rate=0.001, rescale_grad = 1 / batch_size)
updaters = [mx.optimizer.get_updater(opt)]
# the following definition for updaters does not work either
#updaters = [mx.optimizer.get_updater(opt) for _ in ctxList]
results = []
for e in range(epochs):
train_groups = np.array_split(np.arange(X.shape[0]), X.shape[0]/batch_size)
for ii, idx in enumerate(train_groups):
iteration += 1
xtrain, ytrain = X[idx,:], y[idx]
xtrain = nd.array(xtrain)
xtrain = xtrain.as_in_context(ctxList[0])
ytrain = nd.array(ytrain).reshape((-1, 1))
ytrain = ytrain.as_in_context(ctxList[0])
with autograd.record():
yhat = net(xtrain)
error = square_loss(yhat, ytrain.as_in_context(ctxList[-1]))
# Question: does the call to error.backward() go under the indent
# for autograd.record() or outside the indent? The gluon examples have
# it both ways
error.backward()
mytrainer(updaters, net.collect_params())
if iteration%10 == 0:
results.append([iteration, error.asnumpy().item()])
print(("epoch= {:5,d}, iter= {:6,d}, error= {:6.3E}").format(
e, iteration, error.asnumpy().item()))
代码在mytrainer()中的“if not data._fresh_grad”测试中失败。输出是:
initializing:
0 sequential0_mydenseblock0_weight gpu(0)
1 sequential0_mydenseblock0_bias gpu(0)
2 sequential0_mydenseblock1_weight gpu(1)
3 sequential0_mydenseblock1_bias gpu(1)
4 sequential0_mydenseblock2_weight gpu(2)
5 sequential0_mydenseblock2_bias gpu(2)
`sequential0_mydenseblock0_weight` on context gpu(0) has not been updated
我可以使用mx.autograd.get_symbol(error).tojson()
验证计算图仅扩展到gpu(2)上的参数,并且不会达到其他gpus。
答案 0 :(得分:1)
是的,根据@ sergei的评论,转向v1.0.0可以解决这个问题。