X3解析规则没有编译

时间:2017-10-30 04:44:23

标签: c++ boost-spirit boost-spirit-x3

通过编写解析NAMS使用的两个十六进制数变体的解析器,我学习了Boost Spirit:

  1. 十六进制数字,后缀为0x / 0h或前缀为h / x
  2. 前缀为$的十六进制数字,后面必须跟一个十进制数字。
  3. 这是我到目前为止所提出的Coliru Session

    //#define BOOST_SPIRIT_X3_DEBUG
    #include <iostream>
    #include <boost/spirit/home/x3.hpp>
    #include <boost/spirit/home/x3/support/ast/variant.hpp>
    #include <boost/spirit/include/support_extended_variant.hpp>
    
    namespace x3 = boost::spirit::x3;
    
    namespace ast {
        struct hex_data : std::string {};
        struct pascal_hex_data : std::string {};
    
        struct declared_data : boost::spirit::extended_variant<hex_data, pascal_hex_data>
        {
            declared_data () : base_type ()                              { std::cout << "ctor default\n";               } 
            declared_data (hex_data const& rhs) : base_type (rhs)        { std::cout << "ctor hex: " << rhs << "\n";    } 
            declared_data (pascal_hex_data const& rhs) : base_type (rhs) { std::cout << "ctor pascal: " << rhs << "\n"; } 
        };
    
    } // namespace ast
    
    typedef x3::rule<struct hex_digits_class,     std::string>          hex_digit_type;
    typedef x3::rule<struct hex_data_class,       ast::hex_data>        hex_data_type;
    typedef x3::rule<struct pascalhex_data_class, ast::pascal_hex_data> pascalhex_data_type;
    typedef x3::rule<struct declared_data_class,  ast::declared_data>   declared_data_type;
    
    const hex_data_type       hex_data       = "hex_data";
    const hex_digit_type      hex_digit      = "hex_digit";
    const pascalhex_data_type pascalhex_data = "pascal_hex_data";
    const declared_data_type  declared_data  = "declared_data";
    
    auto const hex_digit_def =
      = x3::skip(x3::char_('_'))
          [
            x3::no_case
            [
              x3::char_ ('0', '9') | x3::char_ ("a", "f")
            ]
          ]
      ;
    
    auto const hex_data_def 
      = x3::no_case[x3::lit ("0h") | "0x"] >> +hex_digit_def
      | +hex_digit_def >> x3::no_case[x3::lit ("h") | "x"]
      ;
    
    auto const pascalhex_data_def 
      = x3::lit ("$") >> x3::char_ ('0', '9') >> +hex_digit_def;
    
    auto const declared_data_def 
      = hex_data_def
      | pascalhex_data_def
      ;
    
    BOOST_SPIRIT_DEFINE (hex_digit, hex_data, pascalhex_data, declared_data)
    
    struct Visitor
    {
        using result_type = std::string;
        std::string operator()(ast::hex_data const & v) const        { return "hex_data";        } 
        std::string operator()(ast::pascal_hex_data const & v) const { return "pascal_hex_data"; } 
    };
    
    int main()
    {
      std::string input = "$9";
      ast::declared_data parsed;
    
      bool r =
        x3::parse (input.begin (), input.end (),
                   declared_data_def,
                   parsed);
    
      std::cout << "r = " << r << "\n";
      Visitor v;
      std::cout << "result = " << boost::apply_visitor(v, parsed) << "\n";
    }
    

    但是,规则pascalhex_data_def无法编译,并显示错误消息,看起来精神正在推断规则的属性是charvector {{1}的融合元组即使规则被指定为具有源自variant的ast的属性:

    string

    任何人都可以指出为什么由boost推断的属性不是指定的?无论如何强制规则生成字符串而不是typedef x3::rule<struct pascalhex_data_class, ast::pascal_hex_data> pascalhex_data_type; 提升试图返回?

1 个答案:

答案 0 :(得分:4)

您的代码看起来非常复杂。但是,在看了很长时间之后,我注意到你正在宣布规则(强制它们的属性类型),但是在关键时刻没有使用它们:

auto const declared_data_def = hex_data_def | pascalhex_data_def;

这意味着您直接从表达式模板(_def)初始值设定项构建表达式树,而不是规则:

auto const declared_data_def = hex_data | pascalhex_data;

编译。它仍然存在一些问题:

  • 你可以/不应该没有变体构造函数:

    struct declared_data : boost::spirit::extended_variant<hex_data, pascal_hex_data> {
        using extended_variant::extended_variant;
    };
    
  • 您可以将x3::char_ ('0', '9')写为x3::char_("0-9"),以便编写

    x3::no_case
    [
        x3::char_ ('0', '9') | x3::char_ ("a", "f")
    ]
    

    而不是

    x3::no_case [ x3::char_ ("0-9a-f") ]
    

    甚至

    x3::char_ ("0-9a-fA-F")
    

    或者,也许只是:

    x3::xdigit
    
  • hex_digits_type声明std::string属性,但只解析一个字符。不要使用+hex_digits_def,只需使用hex_digits并写:

    auto const hex_digits_def = x3::skip(x3::char_('_')) [ +x3::xdigit ];
    
  • 您的定义

    "$" >> x3::char_("0-9") >> hex_digits
    

    消耗十六进制数的第一个数字。这导致错误(解析例如$9的空字符串)。相反,您可能想查看operator&

    '$' >> &x3::char_("0-9") >> hex_digits
    

    或者,确实:

    '$' >> &x3::digit >> hex_digits
    
  • 这些规则实际上都不是递归的,所以它们都不需要声明和定义的任何分离。这大大减少了代码

简化,第1步

我怀疑你想十六进制数据解释为数字,而不是字符串。您可能/应该相应地简化AST。第1步:删除从1或其他格式解析的内容之间的区别:

namespace ast {
    using hex_literal = std::string;
}

现在整个程序简化为 Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    using hex_literal = std::string;
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    auto const hex_digits = x3::rule<struct hex_digits_class, ast::hex_literal> {"hex_digits"} 
                          = x3::skip(x3::char_('_')) [ +x3::xdigit ];

    auto const hex_qualifier = x3::omit [ x3::char_("hxHX") ];

    auto const hex_literal = 
        ('$' >> &x3::xdigit | '0' >> hex_qualifier) >> hex_digits
        | hex_digits >> hex_qualifier;
}

int main()
{
    for (std::string const input : { 
            "$9",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "$9_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex"
    }) {
        ast::hex_literal parsed;

        bool r = parse(input.begin(), input.end(), parser::hex_literal, parsed);
        std::cout << "r = " << std::boolalpha << r << ", result = " << parsed << "\n";
    }
}

印刷:

r = true, result = 9
r = true, result = 1b
r = true, result = 1c
r = true, result = 1d
r = true, result = 1e
r = true, result = 9f
r = true, result = 1fb
r = true, result = 1fc
r = true, result = 1fd
r = true, result = 1fe

第2步(打破下划线解析)

现在,很明显,你真的想知道数值:

<强> Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    using hex_literal = uintmax_t;
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    auto const hex_qualifier = x3::omit [ x3::char_("hxHX") ];

    auto const hex_literal 
        = ('$' >> &x3::xdigit | '0' >> hex_qualifier) >> x3::hex
        | x3::hex >> hex_qualifier
        ;
}

int main()
{
    for (std::string const input : { 
            "$9",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "$9_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex"
    }) {
        ast::hex_literal parsed;

        auto f = input.begin(), l = input.end();
        bool r = parse(f, l, parser::hex_literal, parsed) && f==l;

        std::cout << std::boolalpha
             << "r = "            << r
             << ",\tresult = "    << parsed
             << ",\tremaining: '" << std::string(f,l) << "'\n";
    }
}

打印

r = true,   result = 9, remaining: ''
r = true,   result = 27,    remaining: ''
r = true,   result = 28,    remaining: ''
r = true,   result = 29,    remaining: ''
r = true,   result = 30,    remaining: ''
r = false,  result = 9, remaining: '_f'
r = false,  result = 1, remaining: '_fb'
r = false,  result = 1, remaining: '_fc'
r = false,  result = 1, remaining: '1_fdh'
r = false,  result = 1, remaining: '1_fex'

第3步:再次使用下划线

这是我开始考虑自定义解析器的地方。这是因为它将开始涉及语义动作¹以及多个属性强制,坦率地说,将它们打包最方便,这样你就可以像其他任何人一样编写命令式C ++ 14:

<强> Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    using hex_literal = uintmax_t;
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    struct hex_literal_type : x3::parser_base {
        using attribute_type = ast::hex_literal;

        template <typename It, typename Ctx, typename RCtx>
        static bool parse(It& f, It l, Ctx& ctx, RCtx&, attribute_type& attr) {
            std::string digits;

            skip_over(f, l, ctx); // pre-skip using surrounding skipper

            auto constexpr max_digits = std::numeric_limits<attribute_type>::digits / 8;
            auto digits_ = x3::skip(x3::as_parser('_')) [x3::repeat(1, max_digits) [ x3::xdigit ] ];

            auto qualifier = x3::omit [ x3::char_("hxHX") ];
            auto forms
                = ('$' >> &x3::digit | '0' >> qualifier) >> digits_
                | digits_ >> qualifier
                ;

            if (x3::parse(f, l, forms, digits)) {
                attr = std::stoull(digits, nullptr, 16);
                return true;
            }
            return false;
        }
    };

    hex_literal_type static const hex_literal;
}

int main() {
    for (std::string const input : { 
            "$9",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "$9_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex",
            // edge cases
            "ffffffffH", // fits
            "1ffffffffH", // too big
            "$00_00___01___________0__________0", // fine
            "0x", // fine, same as "0h"
            "$",
            // upper case
            "$9",   "0X1B",   "0H1C",   "1DH",   "1EX",
            "$9_F", "0X1_FB", "0H1_FC", "1_FDH", "1_FEX",
    }) {
        ast::hex_literal parsed = 0;

        auto f = input.begin(), l = input.end();
        bool r = parse(f, l, parser::hex_literal, parsed) && f==l;

        std::cout << std::boolalpha
             << "r = "            << r
             << ",\tresult = "    << parsed
             << ",\tremaining: '" << std::string(f,l) << "'\n";
    }
}
  

注意我如何包含max_digits以避免失控解析(例如输入有10千兆字节的十六进制数字)。您可能希望通过预先设置无效的0数字来改善这一点。

输出现在是:

r = true,   result = 9, remaining: ''
r = true,   result = 27,    remaining: ''
r = true,   result = 28,    remaining: ''
r = true,   result = 29,    remaining: ''
r = true,   result = 30,    remaining: ''
r = true,   result = 159,   remaining: ''
r = true,   result = 507,   remaining: ''
r = true,   result = 508,   remaining: ''
r = true,   result = 509,   remaining: ''
r = true,   result = 510,   remaining: ''
r = true,   result = 4294967295,    remaining: ''
r = false,  result = 0, remaining: '1ffffffffH'
r = true,   result = 256,   remaining: ''
r = true,   result = 0, remaining: ''
r = false,  result = 0, remaining: '$'
r = true,   result = 9, remaining: ''
r = true,   result = 27,    remaining: ''
r = true,   result = 28,    remaining: ''
r = true,   result = 29,    remaining: ''
r = true,   result = 30,    remaining: ''
r = true,   result = 159,   remaining: ''
r = true,   result = 507,   remaining: ''
r = true,   result = 508,   remaining: ''
r = true,   result = 509,   remaining: ''
r = true,   result = 510,   remaining: ''

第4步:结冰了

如果你想保留往返的输入格式,你现在可以简单地将它添加到AST:

<强> Live On Coliru

#include <iostream>
#include <boost/spirit/home/x3.hpp>

namespace ast {
    struct hex_literal {
        uintmax_t value;
        std::string source;
    };
}

namespace parser {
    namespace x3 = boost::spirit::x3;

    struct hex_literal_type : x3::parser_base {
        using attribute_type = ast::hex_literal;

        template <typename It, typename Ctx, typename RCtx>
        static bool parse(It& f, It l, Ctx& ctx, RCtx&, attribute_type& attr) {
            std::string digits;

            skip_over(f, l, ctx); // pre-skip using surrounding skipper
            It b = f; // save start

            auto constexpr max_digits = std::numeric_limits<decltype(attr.value)>::digits / 8;
            auto digits_ = x3::skip(x3::as_parser('_')) [x3::repeat(1, max_digits) [ x3::xdigit ] ];

            auto qualifier = x3::omit [ x3::char_("hxHX") ];
            auto forms
                = ('$' >> &x3::digit | '0' >> qualifier) >> digits_
                | digits_ >> qualifier
                ;

            if (x3::parse(f, l, forms, digits)) {
                attr.value = std::stoull(digits, nullptr, 16);
                attr.source.assign(b,l);
                return true;
            }
            return false;
        }
    };

    hex_literal_type static const hex_literal;
}

int main()
{
    for (std::string const input : { 
            "$9",   "0x1b",   "0h1c",   "1dh",   "1ex",
            "$9_f", "0x1_fb", "0h1_fc", "1_fdh", "1_fex",
            // edge cases
            "ffffffffH", // fits
            "1ffffffffH", // too big
            "$00_00___01___________0__________0", // fine
            "0x", // fine, same as "0h"
            "$",
            // upper case
            "$9",   "0X1B",   "0H1C",   "1DH",   "1EX",
            "$9_F", "0X1_FB", "0H1_FC", "1_FDH", "1_FEX",
    }) {
        ast::hex_literal parsed = {};

        auto f = input.begin(), l = input.end();
        bool r = parse(f, l, parser::hex_literal, parsed) && f==l;

        if (r) {
            std::cout << "result = " << parsed.value
                      << ",\tsource = '" << parsed.source << "'\n";
        }
        else {
            std::cout << "FAILED"
                      << ",\tremaining: '" << std::string(f,l) << "'\n";
        }
    }
}

打印:

result = 9, source = '$9'
result = 27,    source = '0x1b'
result = 28,    source = '0h1c'
result = 29,    source = '1dh'
result = 30,    source = '1ex'
result = 159,   source = '$9_f'
result = 507,   source = '0x1_fb'
result = 508,   source = '0h1_fc'
result = 509,   source = '1_fdh'
result = 510,   source = '1_fex'
result = 4294967295,    source = 'ffffffffH'
FAILED, remaining: '1ffffffffH'
result = 256,   source = '$00_00___01___________0__________0'
result = 0, source = '0x'
FAILED, remaining: '$'
result = 9, source = '$9'
result = 27,    source = '0X1B'
result = 28,    source = '0H1C'
result = 29,    source = '1DH'
result = 30,    source = '1EX'
result = 159,   source = '$9_F'
result = 507,   source = '0X1_FB'
result = 508,   source = '0H1_FC'
result = 509,   source = '1_FDH'
result = 510,   source = '1_FEX'

¹Boost Spirit: "Semantic actions are evil"?