美好的一天!我仍然是python的新手。我正在开发一个可以探测行人线的程序。我的问题是,当使用概率霍夫变换时,会检测到线条,但它们会相互重叠。如何摆脱重叠的线条? 这是我的代码:
import cv2
import numpy as np
import math
from matplotlib import pyplot as plt
from calibrate import undist
def auto_canny(img, sigma = 0.5):
v = np.median(img)
lower = int(max(0,(1.0-sigma)*v))
upper = int(min(255,(1.0+sigma)*v))
edged = cv2.Canny(img, lower, upper)
edged = cv2.dilate(edged, None, iterations=1)
edged = cv2.erode(edged, None, iterations=1)
return edged
img = cv2.imread('sample.jpg')
img.shape
green = img[:,:,1]
blurred = cv2.GaussianBlur(green, (5,5), 0)
autoEdges = auto_canny(blurred)
minLineLength = img.shape[1]-10000
lines = cv2.HoughLinesP(image=autoEdges,rho=1,theta=np.pi/500,threshold=10,lines=np.array([]),minLineLength=minLineLength,maxLineGap=90)
a,b,c = lines.shape
for i in range(a):
xst=lines[i][0][0]
yst=lines[i][0][1]
xnd=lines[i][0][2]
ynd=lines[i][0][3]
cv2.line(img,(xst, yst), (xnd, ynd), (0,0,255), 1, cv2.LINE_AA)
l = math.sqrt(((abs(xnd-xst))^2) + ((abs(ynd-yst))^2))
rho = (xst*ynd - xnd*yst)/l
dist = abs(rho)
m = (ynd - yst)/(xnd-xst)
print (dist,m)
cv2.imshow('result',img)
cv2.imshow('canny',autoEdges)
k = cv2.waitKey(0)
if k == 27:
cv2.destroyAllWindows()
elif k == ord('a'):
cv2.imwrite('OUTPUTCANNY.png',autoEdges)
cv2.imwrite('OUTPUTCANNYWITHHOUGH.png',img)
cv2.destroyAllWindows()
这些是每行的输出值(rho,slope):
(2138.987461393825,0)
(9352.1609578182488,0)
(2786.3685089632231,0)
(459.45861938801005,0)
(74.176540269582901,0)
(7768.377424418768,0)
(4323.5582400556614,0)
(1457.9223924831122,0)
(4029.5491996504829,0)
(353.1785277501566,0)
(3429.0843443517056,0)
(687.44444444444446,0)
(1001.540320481475,0)
(4891.3687385623834,0)
(6324.1371540947503,0)
(5782.5260784389111,0)
(2142.4394280125407,0)
(3419.373032213327,0)
(79.606923443428798,0)
(4081.4477628728268,0)
(2548.076237638998,0)
(2075.2538668232146,0)
(96.599999999999994,0)
(28.918275651682048,0)
(457.23808531952665,0)
(563.81287237538288,0)
(4522.6641535572326,0)
(21.582043818522273,0)
(2072.2164335243606,0)
(446.51735688548547,0)
(4145.9017474324037,0)
(181.84369168362207,0)
(2232.0294867294269,0)
(2003.5982177527055,0)
(5148.1880307541214,0)
(654.14939315987181,0)
(114.49162997063731,0)
(1256.9505554297596,0)
(1765.2144695745915,0)
(835.27600228906385,0)
(331.66247903554,0)
(433.90321501459283,0)
(80.786267723119749,0)
(678.50865875094041,0)
(75.599999999999994,0)
(1698.1082622291476,0)
(4893.1250194343038,0)
(870.45171061088456,0)
(714.65656087382285,0)
(605.84788121475981,0)
(2227.8458409210211,0)
(475.17575695735991,0)
(6150.4292926708586,0)
(2489.7061482035415,0)
(75.894663844041105,0)
(603.33333333333337,0)
(973.49884437527714,0)
据推测,应该检测到14条线(边缘)但是如上面的数据所示检测到总共72条线(rho,斜率)。任何人都可以建议消除这些不必要的线路吗?谢谢。
答案 0 :(得分:0)
对于这类问题,不要考虑语言特定的问题。
让我先澄清你的问题。我举一个我之前的实验的例子。
(我创建了一个新帐户,因此我的声誉很低并且图像显示为链接)
这是我的原图: original_image
当我使用 HoughLinesP 时,我得到了这样的结果:houghlinep_result
我很高兴看到只有两行,但我得到了类似这样的行的列表:
[[[ 0 59 104 3]]
[[ 2 59 56 32]]
[[ 96 3 174 57]]
[[ 4 59 49 36]]
[[125 25 174 58]]
[[ 53 34 99 7]]
[[111 12 165 50]]]
我的目标是有两行:better_result
[[ 0 59 104 3]
[ 96 3 174 57]]
这就是我想要的,因为它们在同一条线上,长度不同,角度非常相似。
如果我的问题的这个解决方案是你所需要的,你可以找到两点之间的角度并检查是否已经存在相似的角度。
一小部分例子:
lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), min_line_length, max_line_gap)
cleans = np.empty(shape=[0,4], dtype=np.int32)
for l in lines:
alfa = degrees(atan2(l[0][2]-l[0][0], l[0][3]-l[0][1]))
if len(cleans) == 0:
cleans = np.append(cleans, [l[0]], axis=0)
continue
similar = False
for c in cleans:
beta = degrees(atan2(c[2]-c[0], c[3]-c[1]))
if abs(alfa-beta) <= 3.5:
similar = True
break
if not similar:
cleans = np.append(cleans, [l[0]], axis=0)
print(cleans)
for line in [cleans]:
for x1,y1,x2,y2 in line:
cv2.line(img,(x1,y1),(x2,y2),255,2)
使用atan2函数求两点之间的角度。
请记住,代码没有优化。
它将角度与示例中的 阈值、3.5 进行比较。
如果低于阈值,则认为是相似线,不加入clean数组。
在您的问题中,如果您有超过 2 条线并且可能在不同坐标中具有相似的角度,则您必须进行额外检查,可能使用网格大小。
如果是这种情况,请分享几个屏幕截图。