使用Scikit-Learn GridSearchCV与PredefinedSplit进行交叉验证 - 可疑的良好交叉验证结果

时间:2017-10-18 16:46:14

标签: python scikit-learn cross-validation grid-search

我想使用scikit-learn GridSearchCV执行网格搜索,并使用预定义的开发和验证拆分(1倍交叉验证)计算交叉验证错误。

我担心自己做错了什么,因为我的验证准确度非常高。在哪里我认为我出错:我将我的培训数据分成开发和验证集,培训开发集并在验证集上记录交叉验证分数。我的准确性可能会夸大,因为我实际上是在开发和验证集的混合培训,然后在验证集上进行测试。我不确定我是否正确使用了scikit-learn的PredefinedSplit模块。详情如下:

关注this answer,我做了以下事情:

    import numpy as np
    from sklearn.model_selection import train_test_split, PredefinedSplit
    from sklearn.grid_search import GridSearchCV

    # I split up my data into training and test sets. 
    X_train, X_test, y_train, y_test = train_test_split(
        data[training_features], data[training_response], test_size=0.2, random_state=550)

    # sanity check - dimensions of training and test splits
    print(X_train.shape)
    print(X_test.shape)
    print(y_train.shape)
    print(y_test.shape)

    # dimensions of X_train and x_test are (323430, 26) and (323430,1) respectively
    # dimensions of X_test and y_test are (80858, 26) and (80858, 1)

    ''' Now, I define indices for a pre-defined split. 
    this is a 323430 dimensional array, where the indices for the development
    set are set to -1, and the indices for the validation set are set to 0.'''

    validation_idx = np.repeat(-1, y_train.shape)
    np.random.seed(550)
    validation_idx[np.random.choice(validation_idx.shape[0], 
           int(round(.2*validation_idx.shape[0])), replace = False)] = 0

    # Now, create a list which contains a single tuple of two elements, 
    # which are arrays containing the indices for the development and
    # validation sets, respectively.
    validation_split = list(PredefinedSplit(validation_idx).split())

    # sanity check
    print(len(validation_split[0][0])) # outputs 258744 
    print(len(validation_split[0][0]))/float(validation_idx.shape[0])) # outputs .8
    print(validation_idx.shape[0] == y_train.shape[0]) # True
    print(set(validation_split[0][0]).intersection(set(validation_split[0][1]))) # set([]) 

现在,我使用GridSearchCV运行网格搜索。我的意图是,对于网格上的每个参数组合,模型将适合在开发集上,并且当结果估算器应用到验证集时,将记录交叉验证分数< / em>的。

    # a vanilla XGboost model
    model1 = XGBClassifier()

    # create a parameter grid for the number of trees and depth of trees
    n_estimators = range(300, 1100, 100)
    max_depth = [8, 10]
    param_grid = dict(max_depth=max_depth, n_estimators=n_estimators)

    # A grid search. 
    # NOTE: I'm passing a PredefinedSplit object as an argument to the `cv` parameter.
    grid_search = GridSearchCV(model1, param_grid,
           scoring='neg_log_loss',
           n_jobs=-1, 
           cv=validation_split,
           verbose=1)

现在,这里是为我筹集红旗的地方。我使用gridsearch找到的最佳估计器来查找验证集的准确性。它非常高 - 0.89207865689639176。更糟糕的是,如果我在数据开发集(我刚训练过的)上使用分类器,那么它与几乎完全相同 - {{1} }。 但是 - 当我在真实测试集上使用分类器时,我得到的准确度要低得多,大致为0.89295597192591902

.78

对我而言,应用于开发和验证数据集时模型准确性之间几乎完全一致,以及应用于测试集时精度的显着损失是我培训的明显信号在意外的验证数据上,因此我的交叉验证分数不能代表模型的真实准确性。

我似乎无法找到出错的地方 - 主要是因为当我收到一个 # accurracy score on the validation set. This yields .89207865 accuracy_score(y_pred = grid_result2.predict(X_train.iloc[validation_split[0][1]]), y_true=y_train[validation_split[0][1]]) # accuracy score when applied to the development set. This yields .8929559 accuracy_score(y_pred = grid_result2.predict(X_train.iloc[validation_split[0][0]]), y_true=y_train[validation_split[0][0]]) # finally, the score when applied to the test set. This yields .783 accuracy_score(y_pred = grid_result2.predict(X_test), y_true = y_test) 对象作为参数时,我不知道GridSearchCV正在做什么到PredefinedSplit参数。

我出错的任何想法?如果您需要更多细节/详细说明,请告诉我。代码也在 this notebook on github.

谢谢!

2 个答案:

答案 0 :(得分:3)

您需要设置refit=False(不是默认选项),否则网格搜索将在网格搜索完成后重新调整整个数据集的估算值(忽略cv)。

答案 1 :(得分:0)

是的,验证数据存在数据泄露问题。您需要为 refit = False 设置 GridSearchCV,它不会重新拟合包括训练和验证数据在内的整个数据。