我正在努力加强我的F#-fu并决定解决Facebook黑客杯双方问题。我在运行时遇到了一些问题,并且想知道是否有人可以帮我弄清楚为什么它比我的C#等价物慢得多。
另一篇文章有一个很好的描述;
来源:Facebook黑客杯 2011年资格赛
双平方数是整数X. 这可以表示为。的总和 两个完美的广场。例如,10 是一个双平方因为10 = 3 ^ 2 + 1 ^ 2。给定X,我们如何确定它的方式数量 写成两个正方形的总和?对于 例如,10只能写成3 ^ 2 + 1 ^ 2(我们不计算1 ^ 2 + 3 ^ 2不同)。另一方面,25可以 写成5 ^ 2 + 0 ^ 2或4 ^ 2 + 3 ^ 2.
你需要解决这个问题0≤ X≤2,147,483,647。
示例:
10 => 1
25 => 2
3 => 0
0 => 1
1 => 1
竞争中的数字
1740798996
1257431873个
2147483643个
602519112个
858320077个
1048039120个
415485223个
874566596个
1022907856个
65个
421330820个
1041493518个
5
1328649093个
1941554117个
4225
2082925个
0
1
3
我的基本策略(我愿意批评)是;
这是F#代码(请参阅底部的代码更改)我写过我相信这个策略对应(运行时间:~8:10);
open System
open System.Collections.Generic
open System.IO
/// Get a sequence of values
let rec range min max =
seq { for num in [min .. max] do yield num }
/// Get a sequence starting from 0 and going to max
let rec zeroRange max = range 0 max
/// Find the maximum number in a list with a starting accumulator (acc)
let rec maxNum acc = function
| [] -> acc
| p::tail when p > acc -> maxNum p tail
| p::tail -> maxNum acc tail
/// A helper for finding max that sets the accumulator to 0
let rec findMax nums = maxNum 0 nums
/// Build a collection of combinations; ie [1,2,3] = (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)
let rec combos range =
seq {
let count = ref 0
for inner in range do
for outer in Seq.skip !count range do
yield (inner, outer)
count := !count + 1
}
let rec squares nums =
let dict = new Dictionary<int, int>()
for s in nums do
dict.[s] <- (s * s)
dict
/// Counts the number of possible double squares for a given number and keeps track of other counts that are provided in the memo dict.
let rec countDoubleSquares (num: int) (memo: Dictionary<int, int>) =
// The highest relevent square is the square root because it squared plus 0 squared is the top most possibility
let maxSquare = System.Math.Sqrt((float)num)
// Our relevant squares are 0 to the highest possible square; note the cast to int which shouldn't hurt.
let relSquares = range 0 ((int)maxSquare)
// calculate the squares up front;
let calcSquares = squares relSquares
// Build up our square combinations; ie [1,2,3] = (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)
for (sq1, sq2) in combos relSquares do
let v = calcSquares.[sq1] + calcSquares.[sq2]
// Memoize our relevant results
if memo.ContainsKey(v) then
memo.[v] <- memo.[v] + 1
// return our count for the num passed in
memo.[num]
// Read our numbers from file.
//let lines = File.ReadAllLines("test2.txt")
//let nums = [ for line in Seq.skip 1 lines -> Int32.Parse(line) ]
// Optionally, read them from straight array
let nums = [1740798996; 1257431873; 2147483643; 602519112; 858320077; 1048039120; 415485223; 874566596; 1022907856; 65; 421330820; 1041493518; 5; 1328649093; 1941554117; 4225; 2082925; 0; 1; 3]
// Initialize our memoize dictionary
let memo = new Dictionary<int, int>()
for num in nums do
memo.[num] <- 0
// Get the largest number in our set, all other numbers will be memoized along the way
let maxN = findMax nums
// Do the memoize
let maxCount = countDoubleSquares maxN memo
// Output our results.
for num in nums do
printfn "%i" memo.[num]
// Have a little pause for when we debug
let line = Console.Read()
这是我在C#中的版本(运行时间:~1:40:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Text;
namespace FBHack_DoubleSquares
{
public class TestInput
{
public int NumCases { get; set; }
public List<int> Nums { get; set; }
public TestInput()
{
Nums = new List<int>();
}
public int MaxNum()
{
return Nums.Max();
}
}
class Program
{
static void Main(string[] args)
{
// Read input from file.
//TestInput input = ReadTestInput("live.txt");
// As example, load straight.
TestInput input = new TestInput
{
NumCases = 20,
Nums = new List<int>
{
1740798996,
1257431873,
2147483643,
602519112,
858320077,
1048039120,
415485223,
874566596,
1022907856,
65,
421330820,
1041493518,
5,
1328649093,
1941554117,
4225,
2082925,
0,
1,
3,
}
};
var maxNum = input.MaxNum();
Dictionary<int, int> memo = new Dictionary<int, int>();
foreach (var num in input.Nums)
{
if (!memo.ContainsKey(num))
memo.Add(num, 0);
}
DoMemoize(maxNum, memo);
StringBuilder sb = new StringBuilder();
foreach (var num in input.Nums)
{
//Console.WriteLine(memo[num]);
sb.AppendLine(memo[num].ToString());
}
Console.Write(sb.ToString());
var blah = Console.Read();
//File.WriteAllText("out.txt", sb.ToString());
}
private static int DoMemoize(int num, Dictionary<int, int> memo)
{
var highSquare = (int)Math.Floor(Math.Sqrt(num));
var squares = CreateSquareLookup(highSquare);
var relSquares = squares.Keys.ToList();
Debug.WriteLine("Starting - " + num.ToString());
Debug.WriteLine("RelSquares.Count = {0}", relSquares.Count);
int sum = 0;
var index = 0;
foreach (var square in relSquares)
{
foreach (var inner in relSquares.Skip(index))
{
sum = squares[square] + squares[inner];
if (memo.ContainsKey(sum))
memo[sum]++;
}
index++;
}
if (memo.ContainsKey(num))
return memo[num];
return 0;
}
private static TestInput ReadTestInput(string fileName)
{
var lines = File.ReadAllLines(fileName);
var input = new TestInput();
input.NumCases = int.Parse(lines[0]);
foreach (var lin in lines.Skip(1))
{
input.Nums.Add(int.Parse(lin));
}
return input;
}
public static Dictionary<int, int> CreateSquareLookup(int maxNum)
{
var dict = new Dictionary<int, int>();
int square;
foreach (var num in Enumerable.Range(0, maxNum))
{
square = num * num;
dict[num] = square;
}
return dict;
}
}
}
谢谢你看看。
更新
稍微更改组合功能将导致相当大的性能提升(从8分钟到3:45):
/// Old and Busted...
let rec combosOld range =
seq {
let rangeCache = Seq.cache range
let count = ref 0
for inner in rangeCache do
for outer in Seq.skip !count rangeCache do
yield (inner, outer)
count := !count + 1
}
/// The New Hotness...
let rec combos maxNum =
seq {
for i in 0..maxNum do
for j in i..maxNum do
yield i,j }
答案 0 :(得分:7)
同样,x ^ 2 + y ^ 2 = k的整数解的数量是
请注意,在第二种选择中,您将^ 2 + b ^ 2计算为(-a)^ 2 + b ^ 2(和其他符号)的不同解,并计算为b ^ 2 + a ^ 2。因此,如果你想将解决方案作为集合而不是有序对,那么你可能想要除以4,然后再除以2(如@Wei Hu指出的那样发言)。
了解这一点,编写一个提供解决方案数量的程序很简单:一次性计算最多46341的素数。
给定k,使用上面的列表计算k的素数除数(测试到sqrt(k))。计算等于1 mod 4的数,并求和。如果需要,将4乘以答案。
所有这些都是任何懒惰函数语言中的一两个线程(我不知道f#,在Haskell中它将是两行长),一旦你有一个primes
无限序列:计算除数= 1 mod 4(filterby |> count
或这些行中的某些东西)是非常自然的东西。
我怀疑它比强制分解更快。
答案 1 :(得分:5)
你的F#combos
功能很糟糕。像
let rec combos range =
let a = range |> Seq.toArray
seq {
for i in 0..a.Length-1 do
for j in i..a.Length-1 do
yield i,j }
应该是一个很大的加速。
答案 2 :(得分:2)
我喜欢序列,但在这种情况下,它们可能是错误的工具。这个问题是尝试一个非平凡的递归解决方案的机会。使用变异,很容易做到这样的算法(在Python中,我选择的伪代码......)
def f(n):
i = 0
j = int(1 + sqrt(n))
count = 0
# 'i' will always be increased, and j will always be decreased. We
# will stop if i > j, so we can avoid duplicate pairs.
while i <= j:
s = i * i + j * j
if s < n:
# if any answers exist for this i, they were with higher
# j values. So, increment i.
i += 1
elif s > n:
# likewise, if there was an answer with this j, it was
# found with a smaller i. so, decrement it.
j -= 1
else:
# found a solution. Count it, and then move both i and
# j, because they will be found in at most one solution pair.
count += 1
i += 1
j -= 1
return count
现在,这似乎有效。也许它不对,或者不是最好的,但我喜欢递归代码在F#中的样子。 (警告..我这台电脑上没有F#......但我希望我做对了。)
let f n =
let rec go i j count =
if i > j then count
else
let s = i * i + j * j
if s < n then
go (i + 1) j count
else if s > n then
go i (j - 1) count
else
go (i + 1) (j - 1) (count + 1)
go 0 (1 + (n |> float |> sqrt |> int)) 0
此解决方案在每次调用的O(sqrt(N))时间内运行,并且需要恒定的内存。记忆解决方案花费O(N)时间来设置字典,字典大小至少为O(sqrt(N))。对于大N,这些是完全不同的。
答案 3 :(得分:1)
修改强>
鉴于C#代码,最大的区别是C#代码循环遍历列表,而F#代码迭代序列。当您实际对seq进行计算时,Seq.cache实际上只是一个帮助,在这种情况下,它不会避免重复遍历序列。
这个函数更像是C#代码,但它要求输入是一个数组,而不仅仅是任何序列。
但是,正如你在其他地方所说,整体上需要更好的算法。
let combos (ss: int []) =
let rec helper idx =
seq {
if idx < ss.Length then
for jdx in idx + 1 .. ss.Length - 1 do
yield (ss.[idx], ss.[jdx])
yield! helper (idx + 1)
}
helper 0
结束编辑
这可能是为什么这比同等的C#代码慢的原因之一,尽管我认为IEnumerable会有类似的问题。
let rec combos range =
seq {
let count = ref 0
for inner in range do
for outer in Seq.skip !count range do
yield (inner, outer)
count := !count + 1
}
双环超范围导致它被反复评估。如果必须反复查看序列,可以使用Seq.cache
来避免这种情况。
答案 4 :(得分:1)
这应该有所帮助。
// Build up our square combinations;
for (sq1, sq2) in combos maxSquare do
let v = calcSquares.[sq1] + calcSquares.[sq2]
// Memoize our relevant results
match memo.TryGetValue v with
| true, value -> memo.[v] <- value + 1
| _ -> ()
答案 5 :(得分:1)
我一直在使用F#进行Facebook黑客攻击。这是我的解决方案,在不到0.5秒的时间内完成。虽然我同意你应该尽可能地发挥功能,但有时必须采取更有效的方法,特别是在时间有限的编码竞赛中。
let int_sqrt (n:int) :int =
int (sqrt (float n))
let double_square (x: int) :int =
let mutable count = 0
let square_x = int_sqrt x
for i in 0..square_x do
let y = int_sqrt (x - i*i)
if y*y + i*i = x && i<=y then count <- count + 1
count
答案 6 :(得分:0)
不检查代码,您的算法是次优的。我用以下方法解决了这个问题:
Let N be the number we're testing.
Let X,Y such that X^2 + Y^2 = N
For all 0 <= X < sqrt(N)
Let Ysquared = N - X^2
if( Ysquared > Xsquared ) break; //prevent duplicate solutions
if( isInteger( sqrt(ySquared) ) )
//count unique solution
答案 7 :(得分:0)
这是Stefan Kendall答案的改进。 考虑:N = a ^ 2 + b ^ 2且a> = b> = 0 然后:实数中的sqrt(N / 2)&lt; = a&lt; = sqrt(N)。得到一个整数 interval必须在第一个项(sqrt(N / 2))和舍入后四舍五入 在最后一个学期(sqrt(N))。
public class test001 {
public static void main(String[] args) {
int k=0,min=0,max=0;
double[] list={1740798996,1257431873,2147483643,
602519112,858320077,1048039120,415485223,874566596,
1022907856,65,421330820,1041493518,5,1328649093,
1941554117,4225,2082925,0,1,3};
for(int i=0 ; i<=list.length-1 ; i++){
if (Math.sqrt(list[i]/2)%1==0)
min=(int)Math.sqrt(list[i]/2);
else
min=(int)(Math.sqrt(list[i]/2))+1;
//Rounded up
max=(int)Math.sqrt(list[i]);
//Rounded down
if(max>=min)
for(int j=min ; j<=max ; j++)
if(Math.sqrt(list[i]-j*j)%1==0) k++;
//If sqrt(N-j^2) is an integer then "k" increases.
System.out.println((int)list[i]+": "+k);
k=0;
}
}
}