我希望从我们的数据库中获取累积频率数据。我创建了一个简单的临时表,其中包含我们看到的所有唯一状态更新计数,以及具有该状态更新量的用户数。
Table "pg_temp_4.statuses_count_tmp"
Column | Type | Modifiers
----------------+---------+-----------
statuses_count | integer |
frequency | bigint |
Indexes:
"statuses_count_idx" UNIQUE, btree (statuses_count)
我目前的查询是:
select statuses_count, frequency/(select * from total_statuses)::float, (select sum(frequency)/(select * from total_statuses)::float AS percentage from statuses_count_tmp WHERE statuses_count <= SCT.statuses_count) AS cumulative_percent FROM statuses_count_tmp AS SCT ORDER BY statuses_count DESC;
但是这需要相当长的一段时间,查询的数量会很快增长。因此,对于我所拥有的约50,000行,我正在查看要读取的50k因子行。坐在这里看着查询磨掉了我希望有一个更好的解决方案,我还没有通过。
希望得到这样的东西:
0 0.26975161 0.26975161
1 0.15306534 0.42281695
2 0.05513516 0.47795211
3 0.03050646 0.50845857
4 0.02064444 0.52910301
答案 0 :(得分:2)
假设你有PostgreSQL 8.4或更高版本,应该可以解决窗口函数问题。我猜total_statuses
是一个select sum(frequency) from statuses_count_tmp
行的视图或临时表?我在这里写了一个CTE,它应该在语句的持续时间内只计算一次结果:
with total_statuses as (select sum(frequency) from statuses_count_tmp)
select statuses_count,
frequency / (select * from total_statuses) as frequency,
sum(frequency) over(order by statuses_count)
/ (select * from total_statuses) as cumulative_frequency
from statuses_count_tmp
如果没有8.4的窗口函数,最好的办法就是迭代处理数据:
create type cumulative_sum_type as ( statuses_count int, frequency numeric, cumulative_frequency numeric );
create or replace function cumulative_sum() returns setof cumulative_sum_type strict stable language plpgsql as $$
declare
running_total bigint := 0;
total bigint;
data_in record;
data_out cumulative_sum_type;
begin
select sum(frequency) into total from statuses_count_tmp;
for data_in in select statuses_count, frequency from statuses_count_tmp order by statuses_count
loop
data_out.statuses_count := data_in.statuses_count;
running_total := running_total + data_in.frequency;
data_out.frequency = data_in.frequency::numeric / total;
data_out.cumulative_frequency = running_total::numeric / total;
return next data_out;
end loop;
end;
$$;
select * from cumulative_sum();