我一直在思考comonads并且有一种直觉,即非空列表("完整列表")是一个comonad。我在伊德里斯构建了一个合理的实现,并努力证明comonad laws,但未能证明其中一个法则的递归分支。我如何证明这一点(?i_do_not_know_how_to_prove_this_if_its_provable
漏洞) - 或者我错误地认为我的实施是一个有效的comonad(我已经查看了Haskell NonEmpty
comonad实现,它似乎与矿)?
module FullList
%default total
data FullList : Type -> Type where
Single : a -> FullList a
Cons : a -> FullList a -> FullList a
extract : FullList a -> a
extract (Single x) = x
extract (Cons x _) = x
duplicate : FullList a -> FullList (FullList a)
duplicate = Single
extend : (FullList a -> b) -> FullList a -> FullList b
extend f (Single x) = Single (f (Single x))
extend f (Cons x y) = Cons (f (Cons x y)) (extend f y)
extend_and_extract_are_inverse : (l : FullList a) -> extend FullList.extract l = l
extend_and_extract_are_inverse (Single x) = Refl
extend_and_extract_are_inverse (Cons x y) = rewrite extend_and_extract_are_inverse y in Refl
comonad_law_1 : (l : FullList a) -> extract (FullList.extend f l) = f l
comonad_law_1 (Single x) = Refl
comonad_law_1 (Cons x y) = Refl
nesting_extend : (l : FullList a) -> extend f (extend g l) = extend (\x => f (extend g x)) l
nesting_extend (Single x) = Refl
nesting_extend (Cons x y) = ?i_do_not_know_how_to_prove_this_if_its_provable
答案 0 :(得分:3)
请注意,您的目标是以下形式:
firebase login
Already logged in as desiredAccount@gmail.com
你基本上需要证明尾部相等:
Cons (f (Cons (g (Cons x y)) (extend g y))) (extend f (extend g y)) =
Cons (f (Cons (g (Cons x y)) (extend g y))) (extend (\x1 => f (extend g x1)) y)
但这正是诱导假设(extend f (extend g y) = extend (\x1 => f (extend g x1)) y
)所说的!因此,证据非常简单:
nesting_extend y
我使用了同余引理nesting_extend : (l : FullList a) -> extend f (extend g l) = extend (f . extend g) l
nesting_extend (Single x) = Refl
nesting_extend (Cons x y) = cong $ nesting_extend y
:
cong
表示任何函数cong : (a = b) -> f a = f b
将相等的术语映射为相等的术语。
此处,Idris推断f
为f
,其中Cons (f (Cons (g (Cons x y)) (extend g y)))
f
引用Cons
的参数nesting_extend
。