问题继续: Remove duplicate outcomes, when outcomes are strings and not in the same order
我想创建一个数据框,其中包含滚动两个骰子的可能结果。其重点是单独运行模拟并使用结果数填充数据框。我编写了以下代码来创建数据框:
# Create variables in data frame
dice1 <- sort(rep(1:6,6))
dice2 <- rep(1:6,6)
dicesum <- dice1 + dice2
# Assign variables to data frame
df <- data.frame(dice1, dice2, dicesum)
# Remove duplicates
inx <- duplicated(t(apply(df, 1, sort)))
df <- df[!inx, ]
rownames(df) <- 1:nrow(df)
# initiate a column that holds the simulation outcome count
df["count"] <- numeric(nrow(df))
> str(df)
'data.frame': 21 obs. of 4 variables:
$ dice1 : int 1 1 1 1 1 1 2 2 2 2 ...
$ dice2 : int 1 2 3 4 5 6 2 3 4 5 ...
$ dicesum: int 2 3 4 5 6 7 4 5 6 7 ...
$ count : num 0 0 0 0 0 0 0 0 0 0 ...
> head(df)
dice1 dice2 dicesum count
1 1 1 2 0
2 1 2 3 0
3 1 3 4 0
4 1 4 5 0
5 1 5 6 0
6 1 6 7 0
# Simulate dice rolls
sim_dice1 <- sample(1:6, 100, replace = T)
sim_dice2 <- sample(1:6, 100, replace = T)
# Data frame with simulations
rolls <- data.frame(sim_dice1, sim_dice2)
> str(rolls)
'data.frame': 100 obs. of 2 variables:
$ sim_dice1: int 2 1 5 2 4 2 1 4 6 1 ...
$ sim_dice2: int 6 5 4 1 4 5 4 5 6 2 ...
> head(rolls)
sim_dice1 sim_dice2
1 2 6
2 1 5
3 5 4
4 2 1
5 4 4
6 2 5
使用模拟结果填充df中“count”列的最佳方法是什么?请注意,模拟数据框有重复结果 - 我认为是(1,6)和(6,1)重复的结果。
答案 0 :(得分:1)
我们可以使用dplyr
包来完成此任务。
library(dplyr)
# Create and count the number of each Group
rolls2 <- rolls %>%
rowwise() %>%
mutate(Group = toString(sort(c(sim_dice1, sim_dice2)))) %>%
ungroup() %>%
count(Group)
# Create the Group name
df2 <- df %>%
rowwise() %>%
mutate(Group = toString(sort(c(dice1, dice2))))
# Perform merge between df2 and rolls2
df3 <- df2 %>%
left_join(rolls2, by = "Group") %>%
select(-Group) %>%
rename(count = n) %>%
replace(is.na(.), 0)
df3
Source: local data frame [21 x 4]
Groups: <by row>
# A tibble: 21 x 4
dice1 dice2 dicesum count
<int> <int> <int> <dbl>
1 1 1 2 0
2 1 2 3 5
3 1 3 4 5
4 1 4 5 8
5 1 5 6 4
6 1 6 7 5
7 2 2 4 2
8 2 3 5 8
9 2 4 6 7
10 2 5 7 7
# ... with 11 more rows
数据强>
# Create variables in data frame
dice1 <- sort(rep(1:6,6))
dice2 <- rep(1:6,6)
dicesum <- dice1 + dice2
# Assign variables to data frame
df <- data.frame(dice1, dice2, dicesum)
# Remove duplicates
inx <- duplicated(t(apply(df, 1, sort)))
df <- df[!inx, ]
rownames(df) <- 1:nrow(df)
# Set seed for the reproducibility
set.seed(123)
# Simulate dice rolls
sim_dice1 <- sample(1:6, 100, replace = T)
sim_dice2 <- sample(1:6, 100, replace = T)
# Data frame with simulations
rolls <- data.frame(sim_dice1, sim_dice2)
答案 1 :(得分:0)
这就是你要找的东西:
> # reduce to 10 simulation for illustration
> set.seed(17699398)
> sim_dice1 <- sample(1:6, 10, replace = T)
> sim_dice2 <- sample(1:6, 10, replace = T)
>
> sim_sum <- sim_dice1 + sim_dice2
>
> # print for illustration
> cbind(sim_dice1, sim_dice2, sim_sum)
sim_dice1 sim_dice2 sim_sum
[1,] 6 5 11
[2,] 3 1 4
[3,] 3 2 5
[4,] 6 5 11
[5,] 3 6 9
[6,] 3 2 5
[7,] 1 5 6
[8,] 1 2 3
[9,] 2 4 6
[10,] 2 2 4
>
> # make table
> sim_outcome <- table(sim_sum)
> sim_outcome
sim_sum
3 4 5 6 9 11
1 2 2 2 1 2
>
>
> # use that df and returned object from table function is sorted
> df$count[match(as.integer(names(sim_outcome)), df$dicesum)] <- sim_outcome
>
> df
dice1 dice2 dicesum count
1 1 1 2 0
2 1 2 3 1
3 1 3 4 2
4 1 4 5 2
5 1 5 6 2
6 1 6 7 0
7 2 2 4 0
8 2 3 5 0
9 2 4 6 0
10 2 5 7 0
11 2 6 8 0
12 3 3 6 0
13 3 4 7 0
14 3 5 8 0
15 3 6 9 1
16 4 4 8 0
17 4 5 9 0
18 4 6 10 0
19 5 5 10 0
20 5 6 11 2
21 6 6 12 0