matplotlib是否相当于MATLAB的datacursormode?

时间:2011-01-10 22:54:05

标签: python matplotlib

在MATLAB中,当用户鼠标悬停时,可以使用datacursormode向图形添加注释。在matplotlib中有这样的事吗?或者我需要使用matplotlib.text.Annotation编写自己的事件?

1 个答案:

答案 0 :(得分:57)

延迟编辑/无耻插件:现在可以使用mpldatacursor这个功能(功能更多)。调用mpldatacursor.datacursor()将为所有matplotlib艺术家启用它(包括对图像中z值的基本支持等)。


据我所知,还没有一个已经实现过,但写一些类似的东西并不难:

import matplotlib.pyplot as plt

class DataCursor(object):
    text_template = 'x: %0.2f\ny: %0.2f'
    x, y = 0.0, 0.0
    xoffset, yoffset = -20, 20
    text_template = 'x: %0.2f\ny: %0.2f'

    def __init__(self, ax):
        self.ax = ax
        self.annotation = ax.annotate(self.text_template, 
                xy=(self.x, self.y), xytext=(self.xoffset, self.yoffset), 
                textcoords='offset points', ha='right', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
                )
        self.annotation.set_visible(False)

    def __call__(self, event):
        self.event = event
        # xdata, ydata = event.artist.get_data()
        # self.x, self.y = xdata[event.ind], ydata[event.ind]
        self.x, self.y = event.mouseevent.xdata, event.mouseevent.ydata
        if self.x is not None:
            self.annotation.xy = self.x, self.y
            self.annotation.set_text(self.text_template % (self.x, self.y))
            self.annotation.set_visible(True)
            event.canvas.draw()

fig = plt.figure()
line, = plt.plot(range(10), 'ro-')
fig.canvas.mpl_connect('pick_event', DataCursor(plt.gca()))
line.set_picker(5) # Tolerance in points

Datacursor-ish thing in matplotlib

由于看起来至少有几个人正在使用此功能,我在下面添加了更新版本。

新版本的使用更简单,文档更多(至少是一点点)。

基本上你会使用它类似于:

plt.figure()
plt.subplot(2,1,1)
line1, = plt.plot(range(10), 'ro-')
plt.subplot(2,1,2)
line2, = plt.plot(range(10), 'bo-')

DataCursor([line1, line2])

plt.show()

主要区别在于:a)无需手动调用line.set_picker(...),b)无需手动调用fig.canvas.mpl_connect,c)此版本处理多个轴和多个数字。

from matplotlib import cbook

class DataCursor(object):
    """A simple data cursor widget that displays the x,y location of a
    matplotlib artist when it is selected."""
    def __init__(self, artists, tolerance=5, offsets=(-20, 20), 
                 template='x: %0.2f\ny: %0.2f', display_all=False):
        """Create the data cursor and connect it to the relevant figure.
        "artists" is the matplotlib artist or sequence of artists that will be 
            selected. 
        "tolerance" is the radius (in points) that the mouse click must be
            within to select the artist.
        "offsets" is a tuple of (x,y) offsets in points from the selected
            point to the displayed annotation box
        "template" is the format string to be used. Note: For compatibility
            with older versions of python, this uses the old-style (%) 
            formatting specification.
        "display_all" controls whether more than one annotation box will
            be shown if there are multiple axes.  Only one will be shown
            per-axis, regardless. 
        """
        self.template = template
        self.offsets = offsets
        self.display_all = display_all
        if not cbook.iterable(artists):
            artists = [artists]
        self.artists = artists
        self.axes = tuple(set(art.axes for art in self.artists))
        self.figures = tuple(set(ax.figure for ax in self.axes))

        self.annotations = {}
        for ax in self.axes:
            self.annotations[ax] = self.annotate(ax)

        for artist in self.artists:
            artist.set_picker(tolerance)
        for fig in self.figures:
            fig.canvas.mpl_connect('pick_event', self)

    def annotate(self, ax):
        """Draws and hides the annotation box for the given axis "ax"."""
        annotation = ax.annotate(self.template, xy=(0, 0), ha='right',
                xytext=self.offsets, textcoords='offset points', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
                )
        annotation.set_visible(False)
        return annotation

    def __call__(self, event):
        """Intended to be called through "mpl_connect"."""
        # Rather than trying to interpolate, just display the clicked coords
        # This will only be called if it's within "tolerance", anyway.
        x, y = event.mouseevent.xdata, event.mouseevent.ydata
        annotation = self.annotations[event.artist.axes]
        if x is not None:
            if not self.display_all:
                # Hide any other annotation boxes...
                for ann in self.annotations.values():
                    ann.set_visible(False)
            # Update the annotation in the current axis..
            annotation.xy = x, y
            annotation.set_text(self.template % (x, y))
            annotation.set_visible(True)
            event.canvas.draw()

if __name__ == '__main__':
    import matplotlib.pyplot as plt
    plt.figure()
    plt.subplot(2,1,1)
    line1, = plt.plot(range(10), 'ro-')
    plt.subplot(2,1,2)
    line2, = plt.plot(range(10), 'bo-')

    DataCursor([line1, line2])

    plt.show()