Python或其任何模块是否具有MATLAB conv2函数的等价物?更具体地说,我对在MATLAB中执行与conv2(A, B, 'same')
相同的计算感兴趣。
答案 0 :(得分:4)
看起来scipy.signal.convolve2d就是你要找的。 p>
答案 1 :(得分:3)
虽然其他答案已经提到scipy.signal.convolve2d
作为等价物,但我发现使用mode='same'
时结果确实不同。
虽然Matlab的conv2
导致图像底部和右侧出现伪影,但scipy.signal.convolve2d
在图像的顶部和左侧具有相同的瑕疵。
请参阅这些链接以查看显示行为的图表(没有足够的声誉直接发布图片):
Upper left corner of convoluted Barbara
Lower right corner of convoluted Barbara
以下包装器可能效率不高,但在我的情况下通过旋转两个输入数组和输出数组解决了问题,每个都是180度:
import numpy as np
from scipy.signal import convolve2d
def conv2(x, y, mode='same')
return np.rot90(convolve2d(np.rot90(x, 2), np.rot90(y, 2), mode=mode), 2)
答案 2 :(得分:1)
scipy.ndimage.convolve
是否为n维。
答案 3 :(得分:1)
您必须为每个非单一维度提供偏移量,以重现Matlab的conv2的结果。只支持“相同”选项的简单实现可以像这样做
import numpy as np
from scipy.ndimage.filters import convolve
def conv2(x,y,mode='same'):
"""
Emulate the function conv2 from Mathworks.
Usage:
z = conv2(x,y,mode='same')
TODO:
- Support other modes than 'same' (see conv2.m)
"""
if not(mode == 'same'):
raise Exception("Mode not supported")
# Add singleton dimensions
if (len(x.shape) < len(y.shape)):
dim = x.shape
for i in range(len(x.shape),len(y.shape)):
dim = (1,) + dim
x = x.reshape(dim)
elif (len(y.shape) < len(x.shape)):
dim = y.shape
for i in range(len(y.shape),len(x.shape)):
dim = (1,) + dim
y = y.reshape(dim)
origin = ()
# Apparently, the origin must be set in a special way to reproduce
# the results of scipy.signal.convolve and Matlab
for i in range(len(x.shape)):
if ( (x.shape[i] - y.shape[i]) % 2 == 0 and
x.shape[i] > 1 and
y.shape[i] > 1):
origin = origin + (-1,)
else:
origin = origin + (0,)
z = convolve(x,y, mode='constant', origin=origin)
return z