我有pandas.df 233行* 234列,我需要评估每个单元格并返回相应的列标题,如果不是nan,到目前为止我写了以下内容:
#First get a list of all column names (except column 0):
col_list=[]
for column in df.columns[1:]:
col_list.append(column)
#Then I try to iterate through every cell and evaluate for Null
#Also a counter is initiated to take the next col_name from col_list
#when count reach 233
for index, row in df.iterrows():
count = 0
for x in row[1:]:
count = count+1
for col_name in col_list:
if count >= 233: break
elif str(x) != 'nan':
print col_name
代码并不完全如此,我需要更改什么才能让代码在233行之后中断并转到下一个col_name?
Example:
Col_1 Col_2 Col_3
1 nan 13 nan
2 10 nan nan
3 nan 2 5
4 nan nan 4
output:
1 Col_2
2 Col_1
3 Col_2
4 Col_3
5 Col_3
答案 0 :(得分:5)
我认为如果第一列是index
stack
,则需要删除所有NaN
,然后通过reset_index
从Multiindex
的第二级获取值并选择Series
构造函数或Index.get_level_values
:
s = df.stack().reset_index()['level_1'].rename('a')
print (s)
0 Col_2
1 Col_1
2 Col_2
3 Col_3
4 Col_3
Name: a, dtype: object
或者:
s = pd.Series(df.stack().index.get_level_values(1))
print (s)
0 Col_2
1 Col_1
2 Col_2
3 Col_3
4 Col_3
dtype: object
如果需要输出list
:
L = df.stack().index.get_level_values(1).tolist()
print (L)
['Col_2', 'Col_1', 'Col_2', 'Col_3', 'Col_3']
<强>详细强>:
print (df.stack())
1 Col_2 13.0
2 Col_1 10.0
3 Col_2 2.0
Col_3 5.0
4 Col_3 4.0
dtype: float64
答案 1 :(得分:3)
我使用了jezrael的堆栈解决方案。
但是,如果您对Numpy
方式感兴趣,通常会更快。
In [4889]: np.tile(df.columns, df.shape[0])[~np.isnan(df.values.ravel())]
Out[4889]: array(['Col_2', 'Col_1', 'Col_2', 'Col_3', 'Col_3'], dtype=object)
计时
In [4913]: df.shape
Out[4913]: (100, 3)
In [4914]: %timeit np.tile(df.columns, df.shape[0])[~np.isnan(df.values.ravel())]
10000 loops, best of 3: 35.8 µs per loop
In [4915]: %timeit df.stack().index.get_level_values(1)
1000 loops, best of 3: 335 µs per loop
In [4905]: df.shape
Out[4905]: (100000, 3)
In [4907]: %timeit np.tile(df.columns, df.shape[0])[~np.isnan(df.values.ravel())]
100 loops, best of 3: 5.98 ms per loop
In [4908]: %timeit df.stack().index.get_level_values(1)
100 loops, best of 3: 11.7 ms per loop
根据您的需要选择(可读性,速度,可维护性等)
答案 2 :(得分:1)
您可以使用dropna:
df.dropna(axis=1).columns
轴:{0或'索引',1或'列'}
如何:{'any','all'}
基本上你使用dropna删除null,axis = 1正在删除列,以及=&#34; any&#34;要删除列中的至少一个是null,.columns获取剩余的标题。