我遇到一个普遍的问题,就是找到一个好的算法来为不同数组中的某些整数生成每个可能的赋值。
假设我有n个数组和m个数字(我可以拥有比数字更多的数组,比数组更多的数字或者数字更多的数组)。
作为一个例子,我有数字1,2,3和三个数组:
{},{},{}
现在我想找到这些解决方案中的每一个:
{1,2,3}, { }, { }
{ }, {1,2,3}, { }
{ }, { }, {1,2,3}
{1,2}, {3}, { }
{1,2}, { }, {3}
{ }, {1,2}, {3}
{1}, {2,3}, { }
{1}, { }, {2,3}
{ }, {1}, {2,3}
{1}, {2}, {3}
所以基本上我想找到每个可能的组合来将数字分配给不同的数组并保持顺序。因此,在示例中,1总是需要先于其他人等等......
我想用C ++ / Qt编写一个算法来找到所有这些有效的组合。
有没有人对我如何处理这个问题有所帮助?我如何产生这些排列?
ADDITIONS
不幸的是,我没有设法改变你为我现在遇到的问题提供的很好的例子,因为我想在数组中安排的数字存储在一个数组中(或者对我来说是一个QVector)
任何人都可以帮我改变算法,以便它能够为QVector中的数字提供每个可能的有效组合,以及QVector< QVector>这样我可以对每一个进行进一步的计算吗?
QVector<int> line; // contains the numbers: like {7,3,6,2,1}
QVector< QVector<int> > buckets; // empty buckets for the numbers { {}, {}, {} }
QList< QVector< QVector<int> > > result; // List of all possible results
如果有人能为我提供一个有效的简单实现或如何获得它的提示,那真的很棒......我只是无法改变已经提供的代码以便它可以工作......
答案 0 :(得分:3)
使用回溯递归会很容易。您应该跟踪要填充的阵列以及您要使用的数字。这样的事情:
void gen(int arrayN, int number)
{
if (number == MAX_NUMBER + 1) //We have a solution
{
printSolution();
return;
}
if (arrayN == MAX_ARRAYS + 1) //No solution
return;
gen(arrayN + 1, number); //Skip to next array
for (int i = number; i <= MAX_NUMBER; i++)
{
//Save at this line the numbers into an array for the solution
gen(arrayN + 1, i + 1); //Used the numbers from "number" to "i" inclusive
}
}
gen(0, 1);
答案 1 :(得分:2)
这闻起来像递归。首先计算将m-1放入n个数组的组合。然后通过将第一个数字放在这些解决方案中的n个数组中的任何一个来获得更多解决方案。
答案 2 :(得分:2)
#include <vector>
#include <list>
#include <iostream>
class NestedCollection {
public:
std::vector<std::list<int> > lists;
NestedCollection(int n)
: lists(n, std::list<int>())
{};
NestedCollection(const NestedCollection& other)
: lists(other.lists)
{};
std::vector<NestedCollection> computeDistributions(int n, int m, int last_possible_index) {
std::vector<NestedCollection> result;
// iterate over all possible lists (invariant: last_possible_index >= i >= 0)
// or skip if there is no number left to distribute (invariant: m>0)
for(int i=last_possible_index; i>=0 && m>0 ; --i) {
NestedCollection variation(*this);
// insert the next number
variation.lists[i].push_front(m);
// recurse with all following numbers
std::vector<NestedCollection> distributions = variation.computeDistributions(n, m-1, i);
if(distributions.empty()) // we could also write if(m==1) - this guards the end of the recursion
result.push_back(variation);
else
result.insert(result.end(), distributions.begin(), distributions.end() );
}
return result;
};
static std::vector<NestedCollection> findAllDistributions(int n, int m) {
std::vector<NestedCollection> result;
result = NestedCollection(n).computeDistributions(n, m, n-1);
return result;
};
};
int main() {
int n=3, m=3;
std::vector<NestedCollection> result = NestedCollection::findAllDistributions(n, m);
for(std::vector<NestedCollection>::iterator it = result.begin(); it!=result.end(); ++it) {
for(std::vector<std::list<int> >::iterator jt = it->lists.begin(); jt!=it->lists.end(); ++jt) {
std::cout<<"{";
for(std::list<int>::iterator kt = jt->begin(); kt!=jt->end(); ++kt) {
std::cout<<*kt<<", ";
}
std::cout<<"} ";
}
std::cout<<std::endl;
}
return 0;
}
答案 3 :(得分:1)
在这种情况下它分解为2个分区所在的位置。有4个可能的位置,因此这将是16种组合,但不是因为你删除了“重复”。有点像多米诺骨牌。你有4个“双打”,12个单打减少到6个,所以你有10个组合。
您可以选择第一个生成它,然后生成第二个作为&gt; =第一个。
第一个可以是0,1,2或3. 0表示它出现在1之前.3表示它出现在3之后。
在上面的10个解决方案中,分区位于:
1:3和3 2:0和3 3:0和0 4:2和3 5:2和2 6:0和2 7:1和3 8:1和1 9:0和1 10:1和2
如果按算法顺序生成,则可能会生成0和0,0和1,0和2,0和3,1和1,1和2,1和3,2和2,2和3, 3和3虽然你当然可以按相反的顺序进行。
在上面的示例中,请查看逗号的位置和左侧的数字。如果左边没有数字则为0。
答案 4 :(得分:0)
以下代码是用C#编写的。
class LineList<T> : List<T[][]>
{
public override string ToString()
{
var sb = new StringBuilder();
sb.Append(Count).AppendLine(" lines:");
foreach (var line in this)
{
if (line.Length > 0)
{
foreach (var bucket in line)
{
sb.Append('{');
foreach (var item in bucket)
{
sb.Append(item).Append(',');
}
if (bucket.Length > 0)
{
sb.Length -= 1;
}
sb.Append("}, ");
}
sb.Length -= 2;
}
sb.AppendLine();
}
return sb.ToString();
}
}
class Permutor<T>
{
public T[] Items { get; private set; }
public bool ReuseBuckets { get; set; }
private T[] emptyBucket_;
private Dictionary<int, Dictionary<int, T[]>> buckets_; // for memoization when ReuseBuckets=true
public Permutor(T[] items)
{
ReuseBuckets = true; // faster and uses less memory
Items = items;
emptyBucket_ = new T[0];
buckets_ = new Dictionary<int, Dictionary<int, T[]>>();
}
private T[] GetBucket(int index, int size)
{
if (size == 0)
{
return emptyBucket_;
}
Dictionary<int, T[]> forIndex;
if (!buckets_.TryGetValue(index, out forIndex))
{
forIndex = new Dictionary<int, T[]>();
buckets_[index] = forIndex;
}
T[] bucket;
if (!forIndex.TryGetValue(size, out bucket))
{
bucket = new T[size];
Array.Copy(Items, index, bucket, 0, size);
forIndex[size] = bucket;
}
return bucket;
}
public LineList<T> GetLines(int bucketsPerLine)
{
var lines = new LineList<T>();
if (bucketsPerLine > 0)
{
AddLines(lines, bucketsPerLine, 0);
}
return lines;
}
private void AddLines(LineList<T> lines, int bucketAllotment, int taken)
{
var start = bucketAllotment == 1 ? Items.Length - taken : 0;
var stop = Items.Length - taken;
for (int nItemsInNextBucket = start; nItemsInNextBucket <= stop; nItemsInNextBucket++)
{
T[] nextBucket;
if (ReuseBuckets)
{
nextBucket = GetBucket(taken, nItemsInNextBucket);
}
else
{
nextBucket = new T[nItemsInNextBucket];
Array.Copy(Items, taken, nextBucket, 0, nItemsInNextBucket);
}
if (bucketAllotment > 1)
{
var subLines = new LineList<T>();
AddLines(subLines, bucketAllotment - 1, taken + nItemsInNextBucket);
foreach (var subLine in subLines)
{
var line = new T[bucketAllotment][];
line[0] = nextBucket;
subLine.CopyTo(line, 1);
lines.Add(line);
}
}
else
{
var line = new T[1][];
line[0] = nextBucket;
lines.Add(line);
}
}
}
}
这些电话......
var permutor = new Permutor<int>(new[] { 1, 2, 3 });
for (int bucketsPerLine = 0; bucketsPerLine <= 4; bucketsPerLine++)
{
Console.WriteLine(permutor.GetLines(bucketsPerLine));
}
生成此输出......
0 lines:
1 lines:
{1,2,3}
4 lines:
{}, {1,2,3}
{1}, {2,3}
{1,2}, {3}
{1,2,3}, {}
10 lines:
{}, {}, {1,2,3}
{}, {1}, {2,3}
{}, {1,2}, {3}
{}, {1,2,3}, {}
{1}, {}, {2,3}
{1}, {2}, {3}
{1}, {2,3}, {}
{1,2}, {}, {3}
{1,2}, {3}, {}
{1,2,3}, {}, {}
20 lines:
{}, {}, {}, {1,2,3}
{}, {}, {1}, {2,3}
{}, {}, {1,2}, {3}
{}, {}, {1,2,3}, {}
{}, {1}, {}, {2,3}
{}, {1}, {2}, {3}
{}, {1}, {2,3}, {}
{}, {1,2}, {}, {3}
{}, {1,2}, {3}, {}
{}, {1,2,3}, {}, {}
{1}, {}, {}, {2,3}
{1}, {}, {2}, {3}
{1}, {}, {2,3}, {}
{1}, {2}, {}, {3}
{1}, {2}, {3}, {}
{1}, {2,3}, {}, {}
{1,2}, {}, {}, {3}
{1,2}, {}, {3}, {}
{1,2}, {3}, {}, {}
{1,2,3}, {}, {}, {}
解决方案的大致大小(bucketsPerLine * NumberOfLines)占据执行时间。对于这些测试,N是输入数组的长度,bucketsPerLine也设置为N.
N=10, solutionSize=923780, elapsedSec=0.4, solutionSize/elapsedMS=2286
N=11, solutionSize=3879876, elapsedSec=2.1, solutionSize/elapsedMS=1835
N=12, solutionSize=16224936, elapsedSec=10.0, solutionSize/elapsedMS=1627
N=13, solutionSize=67603900, elapsedSec=47.9, solutionSize/elapsedMS=1411