我有一个data.table
包含来自不同位置(站点)的每小时观察时间序列。每个序列都有缺口 - 缺少小时数。我想填写每个站点的小时序列,因此每个序列每小时都有一行(尽管数据将丢失,NA)。
示例数据:
library(data.table)
library(lubridate)
DT <- data.table(site = rep(LETTERS[1:2], each = 3),
date = ymd_h(c("2017080101", "2017080103", "2017080105",
"2017080103", "2017080105", "2017080107")),
# x = c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3),
x = c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3),
key = c("site", "date"))
DT
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: A 2017-08-01 03:00:00 1.2
# 3: A 2017-08-01 05:00:00 1.3
# 4: B 2017-08-01 03:00:00 2.1
# 5: B 2017-08-01 05:00:00 2.2
# 6: B 2017-08-01 07:00:00 2.3
所需结果DT2
将包含每个站点的第一个(最小)日期和最后一个(最大)日期之间的所有小时数,其中新行插入的位置缺少x:
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: A 2017-08-01 02:00:00 NA
# 3: A 2017-08-01 03:00:00 1.2
# 4: A 2017-08-01 04:00:00 NA
# 5: A 2017-08-01 05:00:00 1.3
# 6: B 2017-08-01 03:00:00 2.1
# 7: B 2017-08-01 04:00:00 NA
# 8: B 2017-08-01 05:00:00 2.2
# 9: B 2017-08-01 06:00:00 NA
#10: B 2017-08-01 07:00:00 2.3
我尝试加入DT
,其日期序列由min(date)
和max(date)
构成。这是正确的方向,但日期范围是在所有站点而不是每个站点,填充的行中缺少站点,排序顺序(键)是错误的:
DT[.(seq(from = min(date), to = max(date), by = "hour")),
.SD, on="date"]
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: NA 2017-08-01 02:00:00 NA
# 3: A 2017-08-01 03:00:00 1.2
# 4: B 2017-08-01 03:00:00 2.1
# 5: NA 2017-08-01 04:00:00 NA
# 6: A 2017-08-01 05:00:00 1.3
# 7: B 2017-08-01 05:00:00 2.2
# 8: NA 2017-08-01 06:00:00 NA
# 9: B 2017-08-01 07:00:00 2.3
所以我自然而然地尝试添加by = site
:
DT[.(seq(from = min(date), to = max(date), by = "hour")),
.SD, on="date", by=.(site)]
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: A 2017-08-01 03:00:00 1.2
# 3: A 2017-08-01 05:00:00 1.3
# 4: NA <NA> NA
# 5: B 2017-08-01 03:00:00 2.1
# 6: B 2017-08-01 05:00:00 2.2
# 7: B 2017-08-01 07:00:00 2.3
但这也不起作用。任何人都可以建议使用正确的data.table
公式来提供上面显示的所需填写DT2
吗?
答案 0 :(得分:2)
library(data.table)
library(lubridate)
setDT(DT)
test <- DT[, .(date = seq(min(date), max(date), by = 'hour')), by =
'site']
DT <- merge(test, DT, by = c('site', 'date'), all.x = TRUE)
DT
site date x
1: A 2017-08-01 01:00:00 1.1
2: A 2017-08-01 02:00:00 NA
3: A 2017-08-01 03:00:00 1.2
4: A 2017-08-01 04:00:00 NA
5: A 2017-08-01 05:00:00 1.3
6: B 2017-08-01 03:00:00 2.1
7: B 2017-08-01 04:00:00 NA
8: B 2017-08-01 05:00:00 2.2
9: B 2017-08-01 06:00:00 NA
10: B 2017-08-01 07:00:00 2.3
答案 1 :(得分:1)
感谢Frank和Wen让我走上正轨。我发现了一个紧凑的data.table
解决方案。结果DT2
也在站点和日期上键入,如输入表中所示(虽然我没有在OP中请求这个,但这是合乎需要的)。这是Wen的解决方案的重新制定,采用data.table
语法,我认为这对大型数据集的效率会略高一些。
DT2 <- DT[setkey(DT[, .(date = seq(from = min(date), to = max(date),
by = "hour")), by = site], site, date), ]
DT2
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: A 2017-08-01 02:00:00 NA
# 3: A 2017-08-01 03:00:00 1.2
# 4: A 2017-08-01 04:00:00 NA
# 5: A 2017-08-01 05:00:00 1.3
# 6: B 2017-08-01 03:00:00 2.1
# 7: B 2017-08-01 04:00:00 NA
# 8: B 2017-08-01 05:00:00 2.2
# 9: B 2017-08-01 06:00:00 NA
#10: B 2017-08-01 07:00:00 2.3
key(DT2)
# [1] "site" "date"
EDIT1:正如Frank所提到的,也可以使用on=
语法。以下DT3
表达式给出了正确的答案,但DT3
没有键入,而DT2
结果是键控的。这意味着额外的&#39;如果需要关键结果,则需要setkey()
。
DT3 <- DT[DT[, .(date = seq(from = min(date), to = max(date),
by = "hour")), by = site], on = c("site", "date"), ]
DT3
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: A 2017-08-01 02:00:00 NA
# 3: A 2017-08-01 03:00:00 1.2
# 4: A 2017-08-01 04:00:00 NA
# 5: A 2017-08-01 05:00:00 1.3
# 6: B 2017-08-01 03:00:00 2.1
# 7: B 2017-08-01 04:00:00 NA
# 8: B 2017-08-01 05:00:00 2.2
# 9: B 2017-08-01 06:00:00 NA
#10: B 2017-08-01 07:00:00 2.3
key(DT3)
# NULL
all.equal(DT2, DT3)
# [1] "Datasets has different keys. 'target': site, date. 'current' has no key."
all.equal(DT2, DT3, check.attributes = FALSE)
# [1] TRUE
除了明确使用DT3
之外,有没有办法编写setkey()
表达式来提供键控结果?
EDIT2:弗兰克的评论建议使用DT4
的其他表述keyby = .EACHI
。在这种情况下,.SD
作为j
插入,这在使用by
或keyby
时是必需的。这给出了正确的答案,结果像DT2
表达式一样被键入。
DT4 <- DT[DT[, .(date = seq(from = min(date), to = max(date), by = "hour")),
by = site], on = c("site", "date"), .SD, keyby = .EACHI]
DT4
# site date x
# 1: A 2017-08-01 01:00:00 1.1
# 2: A 2017-08-01 02:00:00 NA
# 3: A 2017-08-01 03:00:00 1.2
# 4: A 2017-08-01 04:00:00 NA
# 5: A 2017-08-01 05:00:00 1.3
# 6: B 2017-08-01 03:00:00 2.1
# 7: B 2017-08-01 04:00:00 NA
# 8: B 2017-08-01 05:00:00 2.2
# 9: B 2017-08-01 06:00:00 NA
#10: B 2017-08-01 07:00:00 2.3
key(DT4)
# [1] "site" "date"
identical(DT2, DT4)
# [1] TRUE