Data.table - group by期间组内的子集很慢

时间:2018-04-01 15:12:31

标签: r data.table

我尝试生成多个聚合统计信息,其中一些需要在每个组的子集上生成。 data.table非常大,有1000万行,但使用没有列子集的by非常快(不到一秒)。只需添加一个需要在每个组的子集上计算的额外列,将运行时间增加12倍 这是一种更快的方法吗?以下是我的完整代码。

library(data.table)
library(microbenchmark)

N = 10^7

DT = data.table(id1 = sample(1:400, size = N, replace = TRUE),
                id2 = sample(1:100, size = N, replace = TRUE),
                id3 = sample(1:50, size = N, replace = TRUE),
                filter_var = sample(1:10, size = N, replace = TRUE),
                x1 = sample(1:1000, size = N, replace = TRUE),
                x2 = sample(1:1000, size = N, replace = TRUE),
                x3 = sample(1:1000, size = N, replace = TRUE),
                x4 = sample(1:1000, size = N, replace = TRUE),
                x5 = sample(1:1000, size = N, replace = TRUE) )

setkey(DT, id1,id2,id3)

microbenchmark( 
  DT[, .(
    sum_x1 = sum(x1),
    sum_x2 = sum(x2),
    sum_x3 = sum(x3),
    sum_x4 = sum(x4),
    sum_x5 = sum(x5),
    avg_x1 = mean(x1),
    avg_x2 = mean(x2),
    avg_x3 = mean(x3),
    avg_x4 = mean(x4),
    avg_x5 = mean(x5)
  ) , by = c('id1','id2','id3')]  , unit = 's', times = 10L)
      min        lq     mean    median       uq      max neval
 0.942013 0.9566891 1.004134 0.9884895 1.031334 1.165144    10


microbenchmark(    DT[, .(
  sum_x1 = sum(x1),
  sum_x2 = sum(x2),
  sum_x3 = sum(x3),
  sum_x4 = sum(x4),
  sum_x5 = sum(x5),
  avg_x1 = mean(x1),
  avg_x2 = mean(x2),
  avg_x3 = mean(x3),
  avg_x4 = mean(x4),
  avg_x5 = mean(x5),
  sum_x1_F1 = sum(x1[filter_var < 5]) #this line slows everything down
) , by = c('id1','id2','id3')]  , unit = 's', times = 10L)

      min      lq     mean   median       uq      max neval
 12.24046 12.4123 12.83447 12.72026 13.49059 13.61248    10

1 个答案:

答案 0 :(得分:5)

GForce使分组操作运行得更快,并且可以处理list(x = funx(X), y = funy(Y)), ...)这样的表达式,其中XY是列名,funxfuny属于一组优化的功能。

  • 有关有效作用的完整说明,请参阅?GForce
  • 要测试表达式是否有效,请阅读DT[, expr, by=, verbose=TRUE]
  • 中的消息

在OP的情况下,即使sum_x1_F1 = sum(x1[filter_var < 5]),我们也有sum(v) GForce未涵盖的内容。在这种特殊情况下,我们可以制作var v = x1 *条件并总结:

DT[, v := x1*(filter_var < 5)]

system.time(    DT[, .(
  sum_x1 = sum(x1),
  sum_x2 = sum(x2),
  sum_x3 = sum(x3),
  sum_x4 = sum(x4),
  sum_x5 = sum(x5),
  avg_x1 = mean(x1),
  avg_x2 = mean(x2),
  avg_x3 = mean(x3),
  avg_x4 = mean(x4),
  avg_x5 = mean(x5),
  sum_x1_F1 = sum(v)
) , by = c('id1','id2','id3')])
#    user  system elapsed 
#    0.63    0.19    0.81 

为了进行比较,请在我的电脑上计算OP的代码:

system.time(    DT[, .(
  sum_x1 = sum(x1),
  sum_x2 = sum(x2),
  sum_x3 = sum(x3),
  sum_x4 = sum(x4),
  sum_x5 = sum(x5),
  avg_x1 = mean(x1),
  avg_x2 = mean(x2),
  avg_x3 = mean(x3),
  avg_x4 = mean(x4),
  avg_x5 = mean(x5),
  sum_x1_F1 = sum(x1[filter_var < 5]) #this line slows everything down
) , by = c('id1','id2','id3')])
#    user  system elapsed 
#    9.00    0.02    9.06