] 2
因此,如下图所示,我在图像上检测到关键点但是换行后的输出图像忽略了左侧的第一张图像,无法弄清楚原因!
import numpy as np
import imutils
import cv2
class Stitcher:
def __init__(self):
# determine if we are using OpenCV v3.X
self.isv3 = imutils.is_cv3()
def stitch(self, imageA,imageB, ratio=0.75, reprojThresh=10.0,
showMatches=False):
# unpack the images, then detect keypoints and extract
# local invariant descriptors from them
#(imageB, imageA) = images
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# match features between the two images
M = self.matchKeypoints(kpsA, kpsB,
featuresA, featuresB, ratio, reprojThresh)
# if the match is None, then there aren't enough matched
# keypoints to create a panorama
if M is None:
return None
# otherwise, apply a perspective warp to stitch the images
# together
(matches, H, status) = M
#print(M)
#print(matches)
#print(H)
#print(status)
#cv2.imwrite('intermediate.jpg',matches)
result = cv2.warpPerspective(imageA, H,
(imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
#cv2.imshow('intermediate',result)
# check to see if the keypoint matches should be visualized
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
status)
# return a tuple of the stitched image and the
# visualization
return (result, vis)
# return the stitched image
return result
def detectAndDescribe(self, image):
# convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we are using OpenCV 3.X
if self.isv3:
# detect and extract features from the image
#SIFT Algorithm
descriptor = cv2.xfeatures2d.SIFT_create()
#SURF Algorithm
#descriptor = cv2.xfeatures2d.SURF_create()# 400 is hesian threshold, optimum values should be around 300-500
#upright SURF: faster and can be used for panorama stiching i.e our case.
#descriptor.upright = True
print(descriptor.descriptorSize())
(kps, features) = descriptor.detectAndCompute(image, None)
print(len(kps),features.shape)
# otherwise, we are using OpenCV 2.4.X
else:
# detect keypoints in the image
detector = cv2.FeatureDetector_create("SIFT")
kps = detector.detect(gray)
# extract features from the image
extractor = cv2.DescriptorExtractor_create("SIFT")
(kps, features) = extractor.compute(gray, kps)
# convert the keypoints from KeyPoint objects to NumPy
# arrays
kps = np.float32([kp.pt for kp in kps])
# return a tuple of keypoints and features
#print("features",features)
return (kps, features)
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
ratio, reprojThresh):
# compute the raw matches and initialize the list of actual
# matches
matcher = cv2.DescriptorMatcher_create("BruteForce")
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
# loop over the raw matches
for m in rawMatches:
# ensure the distance is within a certain ratio of each
# other (i.e. Lowe's ratio test)
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
print(len(matches))
# computing a homography requires at least 4 matches
if len(matches) > 4:
# construct the two sets of points
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# compute the homography between the two sets of points
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
reprojThresh)
# return the matches along with the homograpy matrix
# and status of each matched point
return (matches, H, status)
# otherwise, no homograpy could be computed
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# initialize the output visualization image
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# loop over the matches
for ((trainIdx, queryIdx), s) in zip(matches, status):
# only process the match if the keypoint was successfully
# matched
if s == 1:
# draw the match
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# return the visualization
return vis
以上是用于关键点检测和拼接的代码,
如果有人可以帮助我进行垂直图像拼接而不是旋转图像和执行水平拼接,还有一个问题。
非常感谢!
我更改了我的代码并使用了@ Alexander的padtransf.warpPerspectivePadded函数来执行包装和混合!你能帮助我为输出图像统一照明吗?
答案 0 :(得分:3)
我自己有这个问题。如果我没有弄错,您使用this博客作为参考。
关于该行的问题是warpPerspective
:
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0])) result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
这种方法是全方位的。我的意思是你只是通过替换.shape[0]
和.shape[1]
所代表的宽度和高度的像素值,将imageA拼接在imageB上。我用C ++解决了这个问题,因此没有显示python代码,但可以让你了解必须做的事情。
Mat Htr = Mat::eye(3,3,CV_64F); if (min_x < 0){ max_x = image2.size().width - min_x; Htr.at<double>(0,2)= -min_x; } if (min_y < 0){ max_y = image2.size().height - min_y; Htr.at<double>(1,2)= -min_y; }
perspectiveTransform(vector<Point2f> fourPointImage1, vector<Point2f> image1dst, Htr*homography); perspectiveTransform(vector<Point2f> fourPointImage2, vector<Point2f> image2dst, Htr);
image1dst
四个角和iamge2dst
四个角获取最小值和最大值。image1dst
和iamge2dst
的最小值和最大值,并用于创建正确大小的新blank image
以保存最终拼接的图像。translation
,以确保将其移动到blank image
的虚拟空间warpPerspective(image1, blankImage, (translation*homography),result.size(), INTER_LINEAR,BORDER_CONSTANT,(0)); warpPerspective(image2, image2Updated, translation, result.size(), INTER_LINEAR, BORDER_CONSTANT, (0));
最终目标和结果是确定图像将被扭曲的位置,以便您可以制作一个空白图像来保存整个拼接图像,以便不会裁剪任何内容。只有在完成所有预处理后,才能将图像拼接在一起。我希望这会有所帮助,如果你有问题,那就大呼过瘾。