我有一个关于将椭圆拟合到数据的问题,椭圆中心位于原点。我已经探索了两种适合椭圆的方法,但是生成一个任意的中心,除非我用一些虚构的镜像点操纵数据。
方式#01
该部分脚本直接来自this有用的帖子。我在这里直接复制代码是为了方便。
fit.ellipse <- function (x, y = NULL) {
# from:
# http://r.789695.n4.nabble.com/Fitting-a-half-ellipse-curve-tp2719037p2720560.html
#
# Least squares fitting of an ellipse to point data
# using the algorithm described in:
# Radim Halir & Jan Flusser. 1998.
# Numerically stable direct least squares fitting of ellipses.
# Proceedings of the 6th International Conference in Central Europe
# on Computer Graphics and Visualization. WSCG '98, p. 125-132
#
# Adapted from the original Matlab code by Michael Bedward (2010)
# michael.bedward@gmail.com
#
# Subsequently improved by John Minter (2012)
#
# Arguments:
# x, y - x and y coordinates of the data points.
# If a single arg is provided it is assumed to be a
# two column matrix.
#
# Returns a list with the following elements:
#
# coef - coefficients of the ellipse as described by the general
# quadratic: ax^2 + bxy + cy^2 + dx + ey + f = 0
#
# center - center x and y
#
# major - major semi-axis length
#
# minor - minor semi-axis length
#
EPS <- 1.0e-8
dat <- xy.coords(x, y)
D1 <- cbind(dat$x * dat$x, dat$x * dat$y, dat$y * dat$y)
D2 <- cbind(dat$x, dat$y, 1)
S1 <- t(D1) %*% D1
S2 <- t(D1) %*% D2
S3 <- t(D2) %*% D2
T <- -solve(S3) %*% t(S2)
M <- S1 + S2 %*% T
M <- rbind(M[3,] / 2, -M[2,], M[1,] / 2)
evec <- eigen(M)$vec
cond <- 4 * evec[1,] * evec[3,] - evec[2,]^2
a1 <- evec[, which(cond > 0)]
f <- c(a1, T %*% a1)
names(f) <- letters[1:6]
# calculate the center and lengths of the semi-axes
#
# see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288654/
# J. R. Minter
# for the center, linear algebra to the rescue
# center is the solution to the pair of equations
# 2ax + by + d = 0
# bx + 2cy + e = 0
# or
# | 2a b | |x| |-d|
# | b 2c | * |y| = |-e|
# or
# A x = b
# or
# x = Ainv b
# or
# x = solve(A) %*% b
A <- matrix(c(2*f[1], f[2], f[2], 2*f[3]), nrow=2, ncol=2, byrow=T )
b <- matrix(c(-f[4], -f[5]), nrow=2, ncol=1, byrow=T)
soln <- solve(A) %*% b
b2 <- f[2]^2 / 4
center <- c(soln[1], soln[2])
names(center) <- c("x", "y")
num <- 2 * (f[1] * f[5]^2 / 4 + f[3] * f[4]^2 / 4 + f[6] * b2 - f[2]*f[4]*f[5]/4 - f[1]*f[3]*f[6])
den1 <- (b2 - f[1]*f[3])
den2 <- sqrt((f[1] - f[3])^2 + 4*b2)
den3 <- f[1] + f[3]
semi.axes <- sqrt(c( num / (den1 * (den2 - den3)), num / (den1 * (-den2 - den3)) ))
# calculate the angle of rotation
term <- (f[1] - f[3]) / f[2]
angle <- atan(1 / term) / 2
list(coef=f, center = center, major = max(semi.axes), minor = min(semi.axes), angle = unname(angle))
}
为了说明目的,我们举一个极点分布示例
X<-structure(list(x_polar = c(0, 229.777200000011, 246.746099999989,
-10.8621999999741, -60.8808999999892, 75.8904999999795, -83.938199999975,
-62.9770000000135, 49.1650999999838, 52.3093000000226, 49.6891000000178,
-66.4248999999836, 34.3671999999788, 242.386400000018, 343.60619999998
), y_polar = c(0, 214.868299999973, 161.063599999994, -68.8972000000067,
-77.0230000000447, 93.2863000000361, -16.2356000000145, 27.7828000000445,
-17.8077000000048, 2.10540000000037, 25.6866000000155, -84.6034999999683,
-31.1800000000512, 192.010800000047, 222.003700000001)), .Names = c("x_polar",
"y_polar"), row.names = c(NA, -15L), class = "data.frame")
efit <- fit.ellipse(X)
e <- get.ellipse(efit)
#plot
par(bg=NA)
plot(X, pch=3, col='gray', lwd=2, axes=F, xlab="", ylab="", type='n',
ylim=c(min(X$y_polar)-150, max(X$y_polar)), xlim=c(min(X$x_polar)-150, max(X$x_polar))) #blank plot
points(X$x_polar, X$y_polar, pch=3, col='gray', lwd=2, axes=F, xlab="", ylab="") #observations
lines(e, col="red", lwd=3, lty=2) #plotting the ellipse
points(0,0,col=2, lwd=2, cex=2) #center/origin
要将椭圆的原点放在中心,我们可以修改如下(当然不是最好的方法)
#generate mirror coordinates
X$x_polar_mirror<- -X$x_polar
X$y_polar_mirror<- -X$y_polar
mydata<-as.matrix(data.frame(c(X$x_polar, X$x_polar_mirror), c(X$y_polar, X$y_polar_mirror)))
#fit the data
efit <- fit.ellipse(mydata)
e <- get.ellipse(efit)
par(bg=NA)
plot(mydata, pch=3, col='gray', lwd=2, axes=F, xlab="", ylab="", type='n',
ylim=c(min(X$y_polar)-150, max(X$y_polar)), xlim=c(min(X$x_polar)-150, max(X$x_polar)))
points(X$x_polar, X$y_polar, pch=3, col='gray', lwd=2, axes=F, xlab="", ylab="")
lines(e, col="red", lwd=3, lty=2)
points(0,0,col=2, lwd=2, cex=2) #center
嗯......它有点干预,但没有人会对计算中考虑的所有想象点感到满意。
方式#02
这是拟合数据的另一种间接方式,但椭圆中心不再是原点。任何解决方法?
require(car)
dataEllipse(X$x_polar, X$y_polar, levels=c(0.15, 0.7),
xlim=c(-150, 400), ylim=c(-200,300))
我的问题:(a)是否有一种强有力的替代方法来拟合这些点与原点(0,0)处的椭圆中心? (b)是否有衡量椭圆拟合优度的方法?提前谢谢。
答案 0 :(得分:0)
我不满意我已经认识的方法,应该有一个封闭的表格解决方案,但仍然:
# Ellipse equasion with center in (0, 0) with semiaxis pars[1] and pars[2] rotated by pars[3].
# t and pars[3] in radians
ellipsePoints <- function(t, pars) {
data.frame(x = cos(pars[3]) * pars[1] * cos(t) - sin(pars[3]) * pars[2] * sin(t),
y = sin(pars[3]) * pars[1] * cos(t) + cos(pars[3]) * pars[2] * sin(t))
}
# Way to fit an ellipse through minimising distance to data points.
# If weighted then points which are most remote from center will have bigger impact.
ellipseBrute <- function(x, y, pars, weighted = FALSE) {
d <- sqrt(x**2 + y**2)
t <- asin(y/d)
w <- (d/sum(d))**weighted
t[x == 0 & y == 0] <- 0
ep <- ellipsePoints(t, pars)
sum(w*(sqrt(ep$x**2 + ep$y**2) - d)**2)
}
# Fit through optim.
opt_res <- optim(c(diff(range(X$x_polar)),
diff(range(X$y_polar)),
2*pi)/2,
ellipseBrute,
x = X$x_polar, y = X$y_polar,
weighted = TRUE
)
# Check resulting ellipse throuh plot
df <- ellipsePoints(seq(0, 2*pi, length.out = 1e3), opt_res$par)
plot(y ~ x, df, col = 'blue', t = 'l',
xlim = range(c(X$x_polar, df$x)),
ylim = range(c(X$y_polar, df$y)))
points(0, 0, pch = 3, col = 'blue')
points(y_polar ~ x_polar, X)