R - ANOVA和lrtest中似然比检验误差

时间:2017-09-06 14:39:52

标签: r anova log-likelihood

我正在尝试使用lrtest()在R中运行似然比测试,但它一直给我错误,我无法修复:

dat<-read.csv("file.csv", header=TRUE)
dat1<-glm(Contact~Density + Species, data=dat, family=binomial)
dat2<-glm(Contact~Density + Species + Mass, data=dat, family = binomial)

lrtest(dat1, dat2)
Error in UseMethod("logLik") : 
  no applicable method for 'logLik' applied to an object of class "data.frame" 

> dat1

Call:  glm(formula = Contact ~ Density + Species, family = binomial, 
data = dat)

Coefficients:
(Intercept)      Density    SpeciesNN  
   -2.0615       0.2522       1.3870  

Degrees of Freedom: 39 Total (i.e. Null);  37 Residual
Null Deviance:      54.55 
Residual Deviance: 41.23        AIC: 47.23

> dat2

Call:  glm(formula = Contact ~ Density + Species + Mass, family = binomial, 
data = dat)

Coefficients:
(Intercept)      Density    SpeciesNN         Mass  
    -2.5584       0.2524       1.4258       0.2357  

Degrees of Freedom: 39 Total (i.e. Null);  36 Residual
Null Deviance:      54.55 
Residual Deviance: 41.11        AIC: 49.11

According to this link,ANOVA或lrtest可用于似然比检验。我尝试了ANOVA方法并且测试产生了结果,这与我尝试使用lrtest()时不同。这两者是否可以互换,或者我会使用ANOVA而不是lrtest错过任何有用的分析?

编辑:以下是来自file.csv的数据集样本。

   Density Species Mass Contact
1        2      NN 1.29       0
2        2      NN 2.84       1
3        2      NN 2.58       0
4        2      NN 2.81       1
5        2      NN 2.69       0
6        2       N 2.12       1
7        2       N 2.30       1
8        2       N 1.95       0
9        2       N 2.35       0
10       2       N 2.28       1
11       4      NN 0.90       0
12       4      NN 2.33       0
13       4      NN 0.81       1
14       4      NN 1.37       1
15       4      NN 1.01       1
16       4       N 1.94       0
17       4       N 2.49       0
18       4       N 2.13       0
19       4       N 1.90       0
20       4       N 1.46       0

1 个答案:

答案 0 :(得分:2)

我认为你的代码没有问题。您得到的错误表明dat1和dat2不是模型而是数据框架。也许您没有正确执行代码的第2行和第3行?

建议你完全重启你的R并试试这个:

require(lmtest)
dat=structure(list(n = 1:20, Density = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), Species = structure(c(2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L), .Label = c("N", "NN"), class = "factor"), Mass = c(1.29, 2.84, 2.58, 2.81, 2.69, 2.12, 2.3, 1.95, 2.35, 2.28, 0.9, 2.33, 0.81, 1.37, 1.01, 1.94, 2.49, 2.13, 1.9, 1.46), Contact = c(0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L)), .Names = c("n", "Density", "Species", "Mass", "Contact"), class = "data.frame", row.names = c(NA, -20L))
dat1<-glm(Contact~Density + Species, data=dat, family=binomial)
dat2<-glm(Contact~Density + Species + Mass, data=dat, family = binomial)
lrtest(dat1, dat2)

如果它不起作用,唯一可能发生不同事情的地方就是你在csv文件中读到的内容。

这表明为什么你应该让其他人更容易重现你的问题。特别是您应该允许其他人轻松加载一些示例数据。 Ale甚至还为您提供了解释如何操作的链接。