我在Python 2.7中计算似然比测试时遇到了麻烦。
我有两个模型和相应的似然值。我相信比较模型L2是否优于模型L1(如果模型密切相关)的规则是看-2 * log(L2 / L1)。
然后,我想找到对应于-2 * log(L2 / L1)的p值,并将其与L2的重要性相关联,优先于L1。以下是我到目前为止的情况:import numpy as np
from scipy.stats import chisqprob
L1 = 467400. # log(likelihood) of my 1st fit
L2 = 467414. # log(likelihood) of my 2nd fit
LR = -2. * np.log(L2 / L1) # LR = -5.9905e-05
p = chisqprob(LR, 1) # L2 has 1 DoF more than L1
print 'p: %.30f' % p # p = 1.000000000000000000000000000000
five_sigma = 1 - scipy.special.erf(5 / np.sqrt(2.)) :-)
print '5 sigma: %.30f' % five_sigma
five_sigma_check = 1 - 0.999999426696856 :-(
print 'Check : %.30f' % five_sigma_check
但是,我遇到两个问题:
有人可以提供任何建议吗?我对Python和统计数据的世界相对较新。
感谢。
答案 0 :(得分:7)
要计算给定对数似然的似然比,请使用以下公式:
from scipy.stats.distributions import chi2
def likelihood_ratio(llmin, llmax):
return(2*(llmax-llmin))
LR = likelihood_ratio(L1,L2)
p = chi2.sf(LR, 1) # L2 has 1 DoF more than L1
print 'p: %.30f' % p
# p: 0.000000121315450836607258011741