Python numpy数组 - 关闭最小区域

时间:2017-09-04 19:25:45

标签: python numpy mathematical-morphology

我有一个表示图像的2D布尔numpy数组,我在其上调用skimage.measure.label来标记每个分段区域,给我一个int [0,500]的2D数组;此数组中的每个值表示该像素的区域标签。我想现在删除最小的区域。例如,如果我的输入数组是shape(n,n),我希望所有标记的区域都是<将m个像素包含在较大的周围区域中。例如,如果n = 10且m = 5,我的输入可以是,

0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 7, 8, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 2, 2, 2, 1, 1
4, 4, 4, 4, 2, 2, 2, 2, 1, 1
4, 6, 6, 4, 2, 2, 2, 3, 3, 3
4, 6, 6, 4, 5, 5, 5, 3, 3, 5
4, 4, 4, 4, 5, 5, 5, 5, 5, 5
4, 4, 4, 4, 5, 5, 5, 5, 5, 5

然后输出

0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 1, 1, 1  # 7 and 8 are replaced by 0
0, 0, 0, 0, 0, 0, 0, 1, 1, 1
0, 0, 0, 0, 0, 2, 2, 2, 1, 1
4, 4, 4, 4, 2, 2, 2, 2, 1, 1
4, 4, 4, 4, 2, 2, 2, 3, 3, 3  # 6 is gone, but 3 remains
4, 4, 4, 4, 5, 5, 5, 3, 3, 5
4, 4, 4, 4, 5, 5, 5, 5, 5, 5
4, 4, 4, 4, 5, 5, 5, 5, 5, 5

我已经研究过skimage形态操作,包括binary closing,但似乎没有一个适用于我的用例。有什么建议吗?

1 个答案:

答案 0 :(得分:0)

您可以通过在与每个标签对应的布尔区域上执行二进制扩张来完成此操作。通过这样做,您将找到每个区域的邻居数量。使用此功能,您可以根据需要替换值。

示例代码:

import numpy as np
import scipy.ndimage

m = 5

arr = [[0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
       [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
       [0, 0, 7, 8, 0, 0, 0, 1, 1, 1],
       [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
       [0, 0, 0, 0, 0, 2, 2, 2, 1, 1],
       [4, 4, 4, 4, 2, 2, 2, 2, 1, 1],
       [4, 6, 6, 4, 2, 2, 2, 3, 3, 3],
       [4, 6, 6, 4, 5, 5, 5, 3, 3, 5],
       [4, 4, 4, 4, 5, 5, 5, 5, 5, 5],
       [4, 4, 4, 4, 5, 5, 5, 5, 5, 5]]
arr = np.array(arr)
nval = np.max(arr) + 1

# Compute number of occurances of each number
counts, _ = np.histogram(arr, bins=range(nval + 1))

# Compute the set of neighbours for each number via binary dilation
c = np.array([scipy.ndimage.morphology.binary_dilation(arr == i)
              for i in range(nval)])

# Loop over the set of arrays with bad count and update them to the most common
# neighbour
for i in filter(lambda i: counts[i] < m, range(nval)):
    arr[arr == i] = np.argmax(np.sum(c[:, arr == i], axis=1))

这给出了预期的结果:

>>> arr.tolist()
[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
 [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
 [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
 [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
 [0, 0, 0, 0, 0, 2, 2, 2, 1, 1],
 [4, 4, 4, 4, 2, 2, 2, 2, 1, 1],
 [4, 4, 4, 4, 2, 2, 2, 3, 3, 3],
 [4, 4, 4, 4, 5, 5, 5, 3, 3, 5],
 [4, 4, 4, 4, 5, 5, 5, 5, 5, 5],
 [4, 4, 4, 4, 5, 5, 5, 5, 5, 5]]