我有一个大的numpy数组,并用scipy中标记的连接组件标记它。现在我想创建这个数组的子集,其中只剩下最大或最小的标签。 两种极值当然都可以发生几次。
import numpy
from scipy import ndimage
....
# Loaded in my image file here. To big to paste
....
s = ndimage.generate_binary_structure(2,2) # iterate structure
labeled_array, numpatches = ndimage.label(array,s) # labeling
# get the area (nr. of pixels) of each labeled patch
sizes = ndimage.sum(array,labeled_array,range(1,numpatches+1))
# To get the indices of all the min/max patches. Is this the correct label id?
map = numpy.where(sizes==sizes.max())
mip = numpy.where(sizes==sizes.min())
# This here doesn't work! Now i want to create a copy of the array and fill only those cells
# inside the largest, respecitively the smallest labeled patches with values
feature = numpy.zeros_like(array, dtype=int)
feature[labeled_array == map] = 1
有人可以告诉我如何继续前进吗?
答案 0 :(得分:6)
以下是完整代码:
import numpy
from scipy import ndimage
array = numpy.zeros((100, 100), dtype=np.uint8)
x = np.random.randint(0, 100, 2000)
y = np.random.randint(0, 100, 2000)
array[x, y] = 1
pl.imshow(array, cmap="gray", interpolation="nearest")
s = ndimage.generate_binary_structure(2,2) # iterate structure
labeled_array, numpatches = ndimage.label(array,s) # labeling
sizes = ndimage.sum(array,labeled_array,range(1,numpatches+1))
# To get the indices of all the min/max patches. Is this the correct label id?
map = numpy.where(sizes==sizes.max())[0] + 1
mip = numpy.where(sizes==sizes.min())[0] + 1
# inside the largest, respecitively the smallest labeled patches with values
max_index = np.zeros(numpatches + 1, np.uint8)
max_index[map] = 1
max_feature = max_index[labeled_array]
min_index = np.zeros(numpatches + 1, np.uint8)
min_index[mip] = 1
min_feature = min_index[labeled_array]
注意:
numpy.where
返回元组numpy.where
labeled_array
作为标签掩码数组的索引。结果:
答案 1 :(得分:1)
首先你需要一个带标签的面具,给定一个只有0(背景)和1(前景)的面具:
labeled_mask, cc_num = ndimage.label(mask)
然后找到最大的连通组件:
largest_cc_mask = (labeled_mask == (np.bincount(labeled_mask.flat)[1:].argmax() + 1))
您可以使用argmin()..
推断出最小的物体发现