BeamSearch永远在Tensorflow中

时间:2017-09-03 22:44:49

标签: python-2.7 machine-learning tensorflow artificial-intelligence

我已经在Tensorflow(python)中使用Seq2Seq进行了几周的实验,我有一个工作模型使用双向编码器和基于注意力的解码器工作正常,我今天添加了Beam搜索,但我有我注意到现在推断的光束宽度为1或更长,当我只使用双向编码器和注意力解码器时,推断只需几秒钟。

环境细节: TensorFlow版本:1.3.0 MacOS 10.12.4

下面的

是我的代码的相关部分:

def decoding_layer(dec_input, encoder_state,
                   target_sequence_length, max_target_sequence_length,
                   rnn_size,
                   num_layers, target_vocab_to_int, target_vocab_size,
                   batch_size, keep_prob, decoding_embedding_size , encoder_outputs):
    """
    Create decoding layer
    :param dec_input: Decoder input
    :param encoder_state: Encoder state
    :param target_sequence_length: The lengths of each sequence in the target batch
    :param max_target_sequence_length: Maximum length of target sequences
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :param target_vocab_size: Size of target vocabulary
    :param batch_size: The size of the batch
    :param keep_prob: Dropout keep probability
    :param decoding_embedding_size: Decoding embedding size
    :encoder_outputs : encoder's output 
    :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
    """
    encoder_outputs_tr =encoder_outputs #tf.transpose(encoder_outputs,[1,0,2])
    # 1. Decoder Embedding
    dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
    dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

    # 2. Construct the decoder cell
    def create_cell(rnn_size):
        lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size,
                                            initializer=tf.random_uniform_initializer(-0.1,0.1,seed=2))
        drop = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=keep_prob)
        return drop

    def create_complete_cell(rnn_size,num_layers,encoder_outputs_tr,batch_size,encoder_state , infer ):

        if infer and beam_width >0: 
            encoder_outputs_tr = tf.contrib.seq2seq.tile_batch(encoder_outputs_tr, multiplier=beam_width)

            encoder_state = tf.contrib.seq2seq.tile_batch(encoder_state, multiplier=beam_width)

            batch_size = batch_size * beam_width


        dec_cell = tf.contrib.rnn.MultiRNNCell([create_cell(rnn_size) for _ in range(num_layers)])
        attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=rnn_size, memory=encoder_outputs_tr) 
        attn_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell, attention_mechanism , attention_layer_size=rnn_size , output_attention=False)
        attn_zero = attn_cell.zero_state(batch_size , tf.float32 )
        attn_zero = attn_zero.clone(cell_state = encoder_state)
        return attn_zero ,  attn_cell


    intial_train_state , train_cell = create_complete_cell(rnn_size,num_layers,encoder_outputs_tr,batch_size,encoder_state , False )
    intial_infer_state , infer_cell = create_complete_cell(rnn_size,num_layers,encoder_outputs_tr,batch_size,encoder_state , True )
    output_layer = Dense(target_vocab_size,
                         kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))

    with tf.variable_scope("decode"):
        train_decoder_out = decoding_layer_train(intial_train_state, train_cell, dec_embed_input, 
                         target_sequence_length, max_target_sequence_length, output_layer, keep_prob)

    with tf.variable_scope("decode", reuse=True):
        if beam_width == 0 :
            infer_decoder_out = decoding_layer_infer(intial_infer_state, infer_cell, dec_embeddings, 
                                 target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], max_target_sequence_length, 
                                 target_vocab_size, output_layer, batch_size, keep_prob)
        else :
            infer_decoder_out = decoding_layer_infer_with_Beam(intial_infer_state, infer_cell, dec_embeddings, 
                                 target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], max_target_sequence_length, 
                                 target_vocab_size, output_layer, batch_size, keep_prob)
            print('beam search')

    return (train_decoder_out, infer_decoder_out)

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
#tests.test_decoding_layer(decoding_layer)


def decoding_layer_infer_with_Beam(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id,
                         end_of_sequence_id, max_target_sequence_length,
                         vocab_size, output_layer, batch_size, keep_prob):
    """
    Create a decoding layer for inference
    :param encoder_state: Encoder state
    :param dec_cell: Decoder RNN Cell
    :param dec_embeddings: Decoder embeddings
    :param start_of_sequence_id: GO ID
    :param end_of_sequence_id: EOS Id
    :param max_target_sequence_length: Maximum length of target sequences
    :param vocab_size: Size of decoder/target vocabulary
    :param decoding_scope: TenorFlow Variable Scope for decoding
    :param output_layer: Function to apply the output layer
    :param batch_size: Batch size
    :param keep_prob: Dropout keep probability
    :return: BasicDecoderOutput containing inference logits and sample_id
    """

    start_tokens = tf.tile(tf.constant([start_of_sequence_id], dtype=tf.int32), [batch_size], name='start_tokens')



    inference_decoder = tf.contrib.seq2seq.BeamSearchDecoder(
              cell=dec_cell,
              embedding=dec_embeddings,
              start_tokens=start_tokens,
              end_token=end_of_sequence_id,
              initial_state=encoder_state,
              beam_width=beam_width,
              output_layer=output_layer)


    inference_decoder_output = tf.contrib.seq2seq.dynamic_decode(inference_decoder,
                                                            impute_finished=False
                                                            )[0]
    return inference_decoder_output



"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
#tests.test_decoding_layer_infer(decoding_layer_infer)

以下是模型参数:

# Number of Epochs
epochs = 200
# Batch Size
batch_size = 30
# RNN Size
rnn_size = 512
# Number of Layers
num_layers = 2
# Embedding Size
encoding_embedding_size = 100
decoding_embedding_size = 100
# Learning Rate
learning_rate = 0.001
# Dropout Keep Probability
keep_probability = 0.55
display_step = 10
beam_width=1

我真的很感谢你的帮助,我不确定究竟是什么问题。

谢谢

1 个答案:

答案 0 :(得分:2)

好吧所以我发现我做错了什么。

我只需要在动态解码函数中设置最大迭代值,如下所示:

    inference_decoder_output = tf.contrib.seq2seq.dynamic_decode(inference_decoder,
                                                        impute_finished=False,
                                                        maximum_iterations=max_target_sequence_length)[0]