我从网址中提取了JSON数据。结果是一本字典。如何转换此字典以使每个键都是一列,时间戳是每一行的索引 - 每次调用url时dict values
对应于行条目?
以下是数据:
with urllib.request.urlopen('https://api.blockchain.info/stats') as url:
block_data = json.loads(url.read().decode())
# Convert to Pandas
block_df = pd.DataFrame(block_data)
我试过了:
block_df = pd.DataFrame(block_data)
block_df = pd.DataFrame(block_data, index = 'timestamp')
block_df = pd.DataFrame.from_dict(block_data)
block_df = pd.DataFrame.from_dict(block_data, orient = 'columns')
但所有尝试都会产生不同的错误:
ValueError:如果使用所有标量值,则必须传递索引
和
TypeError:索引(...)必须使用某种类型的集合调用,'时间戳'通过了
答案 0 :(得分:2)
将block_data
包裹在列表中
pd.DataFrame([block_data]).set_index('timestamp')
blocks_size difficulty estimated_btc_sent estimated_transaction_volume_usd hash_rate market_price_usd miners_revenue_btc miners_revenue_usd minutes_between_blocks n_blocks_mined n_blocks_total n_btc_mined n_tx nextretarget total_btc_sent total_fees_btc totalbc trade_volume_btc trade_volume_usd
timestamp
1504121943000 167692649 888171856257 24674767461479 1.130867e+09 7.505715e+09 4583.09 2540 11645247.85 7.92 170 482689 212500000000 281222 483839 174598204968248 41591624963 1653361250000000 43508.93 1.994054e+08
使用datetime
索引。
df = pd.DataFrame([block_data]).set_index('timestamp')
df.index = pd.to_datetime(df.index, unit='ms')
df
blocks_size difficulty estimated_btc_sent estimated_transaction_volume_usd hash_rate market_price_usd miners_revenue_btc miners_revenue_usd minutes_between_blocks n_blocks_mined n_blocks_total n_btc_mined n_tx nextretarget total_btc_sent total_fees_btc totalbc trade_volume_btc trade_volume_usd
timestamp
2017-08-30 19:39:03 167692649 888171856257 24674767461479 1.130867e+09 7.505715e+09 4583.09 2540 11645247.85 7.92 170 482689 212500000000 281222 483839 174598204968248 41591624963 1653361250000000 43508.93 1.994054e+08