A <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c(NA, NA, NA, NA, "JAMES RIVER", NA, NA))
B <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c("JAMES RIVER", NA, "JAMES RIVER",
"RICE MIDSTREAM", "RICE MIDSTREAM"))
预期:
A <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c("JAMES RIVER", "JAMES RIVER", "JAMES RIVER",
"JAMES RIVER", "JAMES RIVER", "RICE MIDSTREAM", "RICE MIDSTREAM"))
B <- data.frame(Item_A = c("00EF", "00EF", "00EF", "00FR", "00FR"),
Item_B = c("JAMES RIVER", "JAMES RIVER", "JAMES RIVER",
"RICE MIDSTREAM", "RICE MIDSTREAM"))
我必须根据Item_B
相同的其他行的Item_B
填写项Item_A
。例如,数据集Item_B
中A
的第一到第四次观察需要成为“JAMES RIVER”。
您能否建议一种方法来填写R中的缺失值?我尝试了很多技巧,却无法得到我想要的东西。
答案 0 :(得分:3)
据我所知,这个不只是在每个data.frame的一列中填充缺失值的练习。我认为这需要在查找或映射表的帮助下填写属于Item_B
的{{1}}的值:
Item_A
library(data.table) # create mapping table from both data.frames map <- unique(rbindlist(list(A, B)))[!is.na(Item_B)] # or, in case there are additional columns besides Item_A and Item_B map <- unique(rbindlist(list(A, B))[!is.na(Item_B), .(Item_A, Item_B)]) map
Item_A Item_B
1: 00FF JAMES RIVER
2: 00EF JAMES RIVER
3: 00FR RICE MIDSTREAM
# join and replace setDT(A)[map, on = c("Item_A"), Item_B := i.Item_B][]
Item_A Item_B
1: 00FF JAMES RIVER
2: 00FF JAMES RIVER
3: 00FF JAMES RIVER
4: 00FF JAMES RIVER
5: 00FF JAMES RIVER
6: 00FR RICE MIDSTREAM
7: 00FR RICE MIDSTREAM
setDT(B)[map, on = c("Item_A"), Item_B := i.Item_B][]
在加入期间,有两列名为 Item_A Item_B
1: 00EF JAMES RIVER
2: 00EF JAMES RIVER
3: 00EF JAMES RIVER
4: 00FR RICE MIDSTREAM
5: 00FR RICE MIDSTREAM
,一列来自第一个数据表,Item_B
(或A
,resp。),另一列来自第二个数据表{{ 1}}。为区分它们,B
前缀表示map
应取自i.
。
答案 1 :(得分:2)
您可以尝试创建一个字典数据框。
library(dplyr)
dictionnary <- bind_rows(A,B) %>%
filter(!is.na(Item_B)) %>%
distinct
find_name <- function(id){
name <- dictionnary[["Item_B"]][which(dictionnary[["Item_A"]]==id)]
return(name)
}
test_id <- c("00EF","00EF","00EF","00FR","00FR")
new_names <- sapply(test_id ,find_name )
然后您可以声明您的数据框:
New_A <- data.frame(Item_A=c("00FF","00FF","00FF","00FF","00FF","00FR","00FR"),
Item_B=sapply(c("00FF","00FF","00FF","00FF","00FF","00FR","00FR"),find_name))
New_B <- data.frame(Item_A=c("00EF","00EF","00EF","00FR","00FR"),
Item_B=sapply(c("00EF","00EF","00EF","00FR","00FR"),find_name))
答案 2 :(得分:1)
您可以尝试使用tidyr library helper fill
library(tidyr)
A %>%
tidyr::fill(Item_B, .direction = "down") %>%
tidyr::fill(Item_B, .direction = "up")
Item_A Item_B
1 00FF JAMES RIVER
2 00FF JAMES RIVER
3 00FF JAMES RIVER
4 00FF JAMES RIVER
5 00FF JAMES RIVER
6 00FR JAMES RIVER
7 00FR JAMES RIVER
答案 3 :(得分:0)
@YXCHEN根据您的输入进行更新
lookup_df <- unique(rbindlist(list(A, B)))[!is.na(Item_B)]
left_join(A %>% select(Item_A), lookup_df)
left_join(B %>% select(Item_A), lookup_df)