我正在使用chainer框架(深度学习),假设我必须在两次迭代的目标函数值的差距很小时停止迭代:f - old_f < eps
。但是chainer.training.Trainer的stop_trigger是(args.epoch,'epoch')元组。如何触发提早停止?
答案 0 :(得分:2)
您可以将可调用对象传递给stop_trigger
选项。通过传递Trainer
对象,在每次迭代时调用可调用对象。它应该返回一个布尔值。当返回值为True
时,训练将停止。为了实现提前停止,您可以编写自己的触发器函数并将其传递给stop_trigger
的{{1}}选项。
接受触发器对象的其他API也接受可调用的;有关详细信息,请参阅the document of get_trigger
。
注意:Trainer
的元组值是使用stop_trigger
作为可调用对象的简写符号。
答案 1 :(得分:1)
根据您的情况,我根据@Seiya Tokui的答案实施了EarlyStoppingTrigger
示例。
from chainer import reporter
from chainer.training import util
class EarlyStoppingTrigger(object):
"""Early stopping trigger
It observes the value specified by `key`, and invoke a trigger only when
observing value satisfies the `stop_condition`.
The trigger may be used to `stop_trigger` option of Trainer module for
early stopping the training.
Args:
max_epoch (int or float): Max epoch for the training, even if the value
is not reached to the condition specified by `stop_condition`,
finish the training if it reaches to `max_epoch` epoch.
key (str): Key of value to be observe for `stop_condition`.
stop_condition (callable): To check the previous value and current value
to decide early stop timing. Default value is `None`, in that case
internal `_stop_condition` method is used.
eps (float): It is used by the internal `_stop_condition`.
trigger: Trigger that decides the comparison interval between previous
best value and current value. This must be a tuple in the form of
``<int>, 'epoch'`` or ``<int>, 'iteration'`` which is passed to
:class:`~chainer.training.triggers.IntervalTrigger`.
"""
def __init__(self, max_epoch, key, stop_condition=None, eps=0.01,
trigger=(1, 'epoch')):
self.max_epoch = max_epoch
self.eps = eps
self._key = key
self._current_value = None
self._interval_trigger = util.get_trigger(trigger)
self._init_summary()
self.stop_condition = stop_condition or self._stop_condition
def __call__(self, trainer):
"""Decides whether the extension should be called on this iteration.
Args:
trainer (~chainer.training.Trainer): Trainer object that this
trigger is associated with. The ``observation`` of this trainer
is used to determine if the trigger should fire.
Returns:
bool: ``True`` if the corresponding extension should be invoked in
this iteration.
"""
epoch_detail = trainer.updater.epoch_detail
if self.max_epoch <= epoch_detail:
print('Reached to max_epoch.')
return True
observation = trainer.observation
summary = self._summary
key = self._key
if key in observation:
summary.add({key: observation[key]})
if not self._interval_trigger(trainer):
return False
stats = summary.compute_mean()
value = float(stats[key]) # copy to CPU
self._init_summary()
if self._current_value is None:
self._current_value = value
return False
else:
if self.stop_condition(self._current_value, value):
# print('Previous value {}, Current value {}'
# .format(self._current_value, value))
print('Invoke EarlyStoppingTrigger...')
self._current_value = value
return True
else:
self._current_value = value
return False
def _init_summary(self):
self._summary = reporter.DictSummary()
def _stop_condition(self, current_value, new_value):
return current_value - new_value < self.eps
用法:您可以将其传递给stop_trigger
,
trainer
选项
early_stop = EarlyStoppingTrigger(args.epoch, key='validation/main/loss', eps=0.01)
trainer = training.Trainer(updater, stop_trigger=early_stop, out=args.out)
有关整个工作示例代码,请参阅this gist。
[注意]我注意到,如果我们使用自定义ProgressBar
,我们还需要修正training_length
扩展名以明确传递stop_trigger
。