在chainer中,如何使用chainer.training.Trainer提前停止迭代?

时间:2017-08-26 04:26:28

标签: chainer

我正在使用chainer框架(深度学习),假设我必须在两次迭代的目标函数值的差距很小时停止迭代:f - old_f < eps。但是chainer.training.Trainer的stop_trigger是(args.epoch,'epoch')元组。如何触发提早停止?

2 个答案:

答案 0 :(得分:2)

您可以将可调用对象传递给stop_trigger选项。通过传递Trainer对象,在每次迭代时调用可调用对象。它应该返回一个布尔值。当返回值为True时,训练将停止。为了实现提前停止,您可以编写自己的触发器函数并将其传递给stop_trigger的{​​{1}}选项。

接受触发器对象的其他API也接受可调用的;有关详细信息,请参阅the document of get_trigger

注意:Trainer的元组值是使用stop_trigger作为可调用对象的简写符号。

答案 1 :(得分:1)

根据您的情况,我根据@Seiya Tokui的答案实施了EarlyStoppingTrigger示例。

from chainer import reporter
from chainer.training import util

class EarlyStoppingTrigger(object):

"""Early stopping trigger

It observes the value specified by `key`, and invoke a trigger only when 
observing value satisfies the `stop_condition`.
The trigger may be used to `stop_trigger` option of Trainer module for
early stopping the training.
Args:
    max_epoch (int or float): Max epoch for the training, even if the value 
        is not reached to the condition specified by `stop_condition`,
        finish the training if it reaches to `max_epoch` epoch.
    key (str): Key of value to be observe for `stop_condition`.
    stop_condition (callable): To check the previous value and current value
        to decide early stop timing. Default value is `None`, in that case
        internal `_stop_condition` method is used.
    eps (float): It is used by the internal `_stop_condition`.
    trigger: Trigger that decides the comparison interval between previous
        best value and current value. This must be a tuple in the form of
        ``<int>, 'epoch'`` or ``<int>, 'iteration'`` which is passed to
        :class:`~chainer.training.triggers.IntervalTrigger`.
"""

def __init__(self, max_epoch, key, stop_condition=None, eps=0.01,
             trigger=(1, 'epoch')):
    self.max_epoch = max_epoch
    self.eps = eps
    self._key = key
    self._current_value = None
    self._interval_trigger = util.get_trigger(trigger)
    self._init_summary()
    self.stop_condition = stop_condition or self._stop_condition

def __call__(self, trainer):
    """Decides whether the extension should be called on this iteration.
    Args:
        trainer (~chainer.training.Trainer): Trainer object that this
            trigger is associated with. The ``observation`` of this trainer
            is used to determine if the trigger should fire.
    Returns:
        bool: ``True`` if the corresponding extension should be invoked in
            this iteration.
    """

    epoch_detail = trainer.updater.epoch_detail
    if self.max_epoch <= epoch_detail:
        print('Reached to max_epoch.')
        return True

    observation = trainer.observation
    summary = self._summary
    key = self._key
    if key in observation:
        summary.add({key: observation[key]})

    if not self._interval_trigger(trainer):
        return False

    stats = summary.compute_mean()
    value = float(stats[key])  # copy to CPU
    self._init_summary()

    if self._current_value is None:
        self._current_value = value
        return False
    else:
        if self.stop_condition(self._current_value, value):
            # print('Previous value {}, Current value {}'
            #       .format(self._current_value, value))
            print('Invoke EarlyStoppingTrigger...')
            self._current_value = value
            return True
        else:
            self._current_value = value
            return False

def _init_summary(self):
    self._summary = reporter.DictSummary()

def _stop_condition(self, current_value, new_value):
    return current_value - new_value < self.eps

用法:您可以将其传递给stop_trigger

trainer选项
early_stop = EarlyStoppingTrigger(args.epoch, key='validation/main/loss', eps=0.01)
trainer = training.Trainer(updater, stop_trigger=early_stop, out=args.out)

有关整个工作示例代码,请参阅this gist

[注意]我注意到,如果我们使用自定义ProgressBar,我们还需要修正training_length扩展名以明确传递stop_trigger