我知道很多ValueError
已经问过inverse_transform
个问题a
。我仍在努力寻找答案,因为我在代码中使用了a.shape
> (100,20)
。
说我有一个数组b
b.shape
> (100,3)
和另一个数组np.concatenate
hat = np.concatenate((a, b), axis=1)
当我做hat
时,
hat.shape
(100,23)
现在inversed_hat = scaler.inverse_transform(hat)
的形状是
inverse_transform
在此之后,我试图这样做,
for arg in "$@"
do
if [ "$arg" == "refs/heads/master" ]
then
DEST="/path/to/production"
git --work-tree=$DEST checkout -f
elif [ "$arg" == "refs/heads/dev" ]
then
DEST="/path/to/dev"
git --work-tree=$DEST checkout -f
fi
done
当我这样做时,我收到一个错误:
ValueError:操作数无法与形状一起广播(100,23)(25,)(100,23)
这是def parse_record(record):
key = ["id", "name", "year", "month", "day", "hour", "central pressure",
"radius", "speed", "lat", "long"]
record = [i if i else 0 for i in record]
value = [str(record[1]), str(record[0]), int((record[2])[:4]),
int((record[2])[5:7]),int((record[2])[8:10]),
int((record[2])[10:13]),float(record[6]),
float(record[7]),float(record[8]),float(record[4]), float(record[5])]
record_dictionary = dict(zip(key,value))
return record_dictionary
record = ["unnamed", "AU190607_01U", "1907-01-17 23:00", "T", "-13", "146.5", "994", "", "10.3"]
r1 = ["unnamed", "AU190607_01U", "1907-01-17 23:00", "T", "-13", "146.5", "994", "100", "10.3"]
r2 = ["unnamed", "AU190607_01U", "1907-01-17 23:00", "T", "-13", "146.5", "994", "", "10.3"]
parse_record(r1)
parse_record(r2)
的广播错误吗?任何建议都会有所帮助。提前谢谢!
答案 0 :(得分:2)
虽然您没有指定,但我假设您使用的是来自scikit learn 的inverse_transform()
StandardScaler
。您需要先填入数据。
import numpy as np
from sklearn.preprocessing import MinMaxScaler
In [1]: arr_a = np.random.randn(5*3).reshape((5, 3))
In [2]: arr_b = np.random.randn(5*2).reshape((5, 2))
In [3]: arr = np.concatenate((arr_a, arr_b), axis=1)
In [4]: scaler = MinMaxScaler(feature_range=(0, 1)).fit(arr)
In [5]: scaler.inverse_transform(arr)
Out[5]:
array([[ 0.19981115, 0.34855509, -1.02999482, -1.61848816, -0.26005923],
[-0.81813499, 0.09873672, 1.53824716, -0.61643731, -0.70210801],
[-0.45077786, 0.31584348, 0.98219019, -1.51364126, 0.69791054],
[ 0.43664741, -0.16763207, -0.26148908, -2.13395823, 0.48079204],
[-0.37367434, -0.16067958, -3.20451107, -0.76465428, 1.09761543]])
In [6]: new_arr = scaler.inverse_transform(arr)
In [7]: new_arr.shape == arr.shape
Out[7]: True
答案 1 :(得分:0)
似乎您正在使用sklearn.preprocessing的预拟合 scaler 对象。 如果是真的,根据我的说法,您用于拟合的数据的维度为(x,25),而数据形状的维度为(x,23),这就是出现此问题的原因。