Tensorflow 1.3.0 NameError:未定义名称“LinearRegressor”

时间:2017-08-18 16:23:16

标签: python tensorflow

我正在关注官方网站上的“入门”说明。 https://www.tensorflow.org/get_started/

我已尝试过virtualenv和pip native installment方法。此时可以导入tensorflow。

但是当tf.estimator.LinearRegressor无法使用时。我是否需要链接某种路径才能使API开始工作?

错误是:

Traceback (most recent call last):
  File "/home/binwang/Documents/Learning_Tensorflow/3_Getting_Started_With_Tensorflow.py", line 13, in <module>
    estimator = LinearRegressor(feature_columns=feature_columns)
NameError: name 'LinearRegressor' is not defined

代码是:

import tensorflow as tf
# NumPy is often used to load, manipulate and preprocess data.
import numpy as np

# Declare list of features. We only have one numeric feature. There are many
# other types of columns that are more complicated and useful.
feature_columns = [tf.feature_column.numeric_column("x", shape=[1])]

# An estimator is the front end to invoke training (fitting) and evaluation
# (inference). There are many predefined types like linear regression,
# linear classification, and many neural network classifiers and regressors.
# The following code provides an estimator that does linear regression.
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)

# TensorFlow provides many helper methods to read and set up data sets.
# Here we use two data sets: one for training and one for evaluation
# We have to tell the function how many batches
# of data (num_epochs) we want and how big each batch should be.
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.estimator.inputs.numpy_input_fn(
    {"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
    {"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
    {"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)

# We can invoke 1000 training steps by invoking the  method and passing the
# training data set.
estimator.train(input_fn=input_fn, steps=1000)

# Here we evaluate how well our model did.
train_metrics = estimator.evaluate(input_fn=train_input_fn)
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
print("train metrics: %r"% train_metrics)
print("eval metrics: %r"% eval_metrics)

谢谢!

1 个答案:

答案 0 :(得分:0)

你可能没有使用tensorflow v1.3吗?

在v1.2中,LinearRegressor位于 tf.contrib.learn 中  api doc因为v1.3位于api doc

使用以下命令打印您安装的版本。

import tensorflow as tf
print(tf.__version__)