我正在关注张量流getting started。我今天下载并安装了anaconda。运行时,下面的程序产生:
File "p3.py", line 35, in <module>
eval_loss = estimator.evaluate(input_fn=eval_input_fn)
NameError: name 'eval_input_fn' is not defined
import numpy as np
import tensorflow as tf
# Declare list of features, we only have one real-valued feature
def model(features, labels, mode):
# Build a linear model and predict values
W = tf.get_variable("W", [1], dtype=tf.float64)
b = tf.get_variable("b", [1], dtype=tf.float64)
y = W*features['x'] + b
# Loss sub-graph
loss = tf.reduce_sum(tf.square(y - labels))
# Training sub-graph
global_step = tf.train.get_global_step()
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = tf.group(optimizer.minimize(loss),
tf.assign_add(global_step, 1))
# ModelFnOps connects subgraphs we built to the
# appropriate functionality.
return tf.contrib.learn.ModelFnOps(
mode=mode, predictions=y,
loss=loss,
train_op=train)
estimator = tf.contrib.learn.Estimator(model_fn=model)
# define our data sets
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x_train}, y_train, 4, num_epochs=1000)
# train
estimator.fit(input_fn=input_fn, steps=1000)
# Here we evaluate how well our model did.
train_loss = estimator.evaluate(input_fn=input_fn)
eval_loss = estimator.evaluate(input_fn=eval_input_fn) #line 35
print("train loss: %r"% train_loss)
print("eval loss: %r"% eval_loss)
答案 0 :(得分:0)
由于某种原因,您没有复制粘贴评估输入功能的定义。 您可以直接在链接的教程中找到它。
这是
行eval_input_fn = tf.contrib.learn.io.numpy_input_fn(
{"x":x_eval}, y_eval, batch_size=4, num_epochs=1000)