我是python和tensorflow的新手。我现在正在测试https://github.com/igul222/improved_wgan_training中的改进的WGAN代码 在将代码调整为python 3.6之后,尽管没有从pylint发出警告,但在运行它时仍会给出“ NameError:名称'train_gen'未定义”。
有人可以帮我吗?
我使用的python版本是3.6。与2.7有很多语法差异。我已经进行了很多更改以使其正常运行。我正在虚拟环境中运行Tensorflow。仍然不知道这个。
AutoCloseable
这是包含错误名称的部分。
import os, sys
sys.path.append(os.getcwd())
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import sklearn.datasets
import tensorflow as tf
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.ops.deconv2d
import tflib.save_images
import tflib.mnist
import tflib.plot
MODE = 'wgan-gp' # dcgan, wgan, or wgan-gp
DIM = 64 # Model dimensionality
BATCH_SIZE = 50 # Batch size
CRITIC_ITERS = 5 # For WGAN and WGAN-GP, number of critic iters per gen iter
LAMBDA = 10 # Gradient penalty lambda hyperparameter
ITERS = 200000 # How many generator iterations to train for
OUTPUT_DIM = 784 # Number of pixels in MNIST (28*28)
lib.print_model_settings(locals().copy())
def LeakyReLU(x, alpha=0.2):
return tf.maximum(alpha*x, x)
def ReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(
name+'.Linear',
n_in,
n_out,
inputs,
initialization='he'
)
return tf.nn.relu(output)
def LeakyReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(
name+'.Linear',
n_in,
n_out,
inputs,
initialization='he'
)
return LeakyReLU(output)
def Generator(n_samples, noise=None):
if noise is None:
noise = tf.random_normal([n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, 4*4*4*DIM, noise)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Generator.BN1', [0], output)
output = tf.nn.relu(output)
output = tf.reshape(output, [-1, 4*DIM, 4, 4])
output = lib.ops.deconv2d.Deconv2D('Generator.2', 4*DIM, 2*DIM, 5, output)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Generator.BN2', [0,2,3], output)
output = tf.nn.relu(output)
output = output[:,:,:7,:7]
output = lib.ops.deconv2d.Deconv2D('Generator.3', 2*DIM, DIM, 5, output)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Generator.BN3', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.5', DIM, 1, 5, output)
output = tf.nn.sigmoid(output)
return tf.reshape(output, [-1, OUTPUT_DIM])
def Discriminator(inputs):
output = tf.reshape(inputs, [-1, 1, 28, 28])
output = lib.ops.conv2d.Conv2D('Discriminator.1',1,DIM,5,output,stride=2)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.2', DIM, 2*DIM, 5, output, stride=2)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN2', [0,2,3], output)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.3', 2*DIM, 4*DIM, 5, output, stride=2)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN3', [0,2,3], output)
output = LeakyReLU(output)
output = tf.reshape(output, [-1, 4*4*4*DIM])
output = lib.ops.linear.Linear('Discriminator.Output', 4*4*4*DIM, 1, output)
return tf.reshape(output, [-1])
real_data = tf.placeholder(tf.float32, shape=[BATCH_SIZE, OUTPUT_DIM])
fake_data = Generator(BATCH_SIZE)
disc_real = Discriminator(real_data)
disc_fake = Discriminator(fake_data)
gen_params = lib.params_with_name('Generator')
disc_params = lib.params_with_name('Discriminator')
if MODE == 'wgan':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
gen_train_op = tf.train.RMSPropOptimizer(
learning_rate=5e-5
).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.RMSPropOptimizer(
learning_rate=5e-5
).minimize(disc_cost, var_list=disc_params)
clip_ops = []
for var in lib.params_with_name('Discriminator'):
clip_bounds = [-.01, .01]
clip_ops.append(
tf.assign(
var,
tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
)
)
clip_disc_weights = tf.group(*clip_ops)
elif MODE == 'wgan-gp':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
alpha = tf.random_uniform(
shape=[BATCH_SIZE,1],
minval=0.,
maxval=1.
)
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += LAMBDA*gradient_penalty
gen_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9
).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9
).minimize(disc_cost, var_list=disc_params)
clip_disc_weights = None
elif MODE == 'dcgan':
gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
disc_fake,
tf.ones_like(disc_fake)
))
disc_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
disc_fake,
tf.zeros_like(disc_fake)
))
disc_cost += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
disc_real,
tf.ones_like(disc_real)
))
disc_cost /= 2.
gen_train_op = tf.train.AdamOptimizer(
learning_rate=2e-4,
beta1=0.5
).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(
learning_rate=2e-4,
beta1=0.5
).minimize(disc_cost, var_list=disc_params)
clip_disc_weights = None
# For saving samples
fixed_noise = tf.constant(np.random.normal(size=(128, 128)).astype('float32'))
fixed_noise_samples = Generator(128, noise=fixed_noise)
def generate_image(frame, true_dist):
samples = session.run(fixed_noise_samples)
lib.save_images.save_images(
samples.reshape((128, 28, 28)),
'samples_{}.png'.format(frame)
)
# Dataset iterator
train_gen, dev_gen, test_gen = lib.mnist.load(BATCH_SIZE, BATCH_SIZE)
def inf_train_gen():
while True:
for images, targets in train_gen():
yield images
# Train loop
with tf.Session() as session:
session.run(tf.initialize_all_variables())
gen = inf_train_gen()
for iteration in range(ITERS):
start_time = time.time()
if iteration > 0:
_ = session.run(gen_train_op)
if MODE == 'dcgan':
disc_iters = 1
else:
disc_iters = CRITIC_ITERS
for i in range(disc_iters):
_data = gen.__next__()
_disc_cost, _ = session.run(
[disc_cost, disc_train_op],
feed_dict={real_data: _data}
)
if clip_disc_weights is not None:
_ = session.run(clip_disc_weights)
lib.plot.plot('train disc cost', _disc_cost)
lib.plot.plot('time', time.time() - start_time)
# Calculate dev loss and generate samples every 100 iters
if iteration % 100 == 99:
dev_disc_costs = []
for images,_ in dev_gen():
_dev_disc_cost = session.run(
disc_cost,
feed_dict={real_data: images}
)
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot('dev disc cost', np.mean(dev_disc_costs))
generate_image(iteration, _data)
# Write logs every 100 iters
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush()
lib.plot.tick()
这是错误。
# Dataset iterator
train_gen, dev_gen, test_gen = lib.mnist.load(BATCH_SIZE, BATCH_SIZE)
def inf_train_gen():
while True:
for images, targets in train_gen():
yield images
答案 0 :(得分:0)
尝试1:
我相信这只是因为您在说for images, targets in train_gen():
时说for images, targets in train_gen:
简而言之,方括号表明您正在调用一个函数,这导致Python引发异常NameError: name 'train_gen' is not defined
,因为没有定义名称为train_gen
的函数。
将来,您的代码应该最少,因为您粘贴了很多代码,这使得调试/查看您的工作非常困难。
第二遍检查代码(这是为什么需要使示例尽可能小的一个很好的理由),我已经意识到您可能会从其他地方导入此代码吗?
在对train_gen
进行第一次分配时,这不在函数范围内。这样一来,当您去调用函数train_gen
时,可能就不再定义了,这就是为什么会出错的原因。发生这种情况可能有多种原因。稍微回顾一下代码后,我可以看到各种问题(大多数是不好的做法)。
像在inf_train_gen
中那样,在函数内使用全局变量通常不是一个好主意,如果函数需要参数才能正确运行,则应将其作为参数传递。这是因为,如果我们对某个变量有疑问(如我们现在所做的那样),通常可以看到该变量的来源以及使用它的原因,但是如果所有函数都依赖于全局范围的变量,那么任何数量的函数都可以删除它,更改它,等等。
现在我不知道变量train_gen
发生了什么,我建议以不同的时间间隔打印该变量,并查看是否可以看到哪个函数调用引起了问题,并且将来远离全局范围内的变量,除非绝对必要,否则几乎不可能进行调试。