有没有办法可视化/绘制使用pyspark中的mllib或ml库创建的决策树。另外,如何获取叶节点中的记录数等信息。感谢
答案 0 :(得分:2)
首先,您需要使用model.toDebugString来获取随机林模型上的输出:
"RandomForestClassificationModel (uid=rfc_6c4ceb92ba78) with 20 trees
Tree 0 (weight 1.0):
If (feature 0 <= 3="" 10="" 1.0)="" if="" (feature="" <="0.0)" predict:="" 0.0="" else=""> 6.0)
Predict: 0.0
Else (feature 10 > 0.0)
If (feature 12 <= 12="" 63.0)="" predict:="" 0.0="" else="" (feature=""> 63.0)
Predict: 0.0
Else (feature 0 > 1.0)
If (feature 13 <= 3="" 1.0)="" if="" (feature="" <="3.0)" predict:="" 0.0="" else=""> 3.0)
Predict: 1.0
Else (feature 13 > 1.0)
If (feature 7 <= 7="" 1.0)="" predict:="" 0.0="" else="" (feature=""> 1.0)
Predict: 0.0
Tree 1 (weight 1.0):
If (feature 2 <= 11="" 15="" 1.0)="" if="" (feature="" <="0.0)" predict:="" 0.0="" else=""> 0.0)
Predict: 1.0
Else (feature 15 > 0.0)
If (feature 11 <= 11="" 0.0)="" predict:="" 0.0="" else="" (feature=""> 0.0)
Predict: 1.0
Else (feature 2 > 1.0)
If (feature 12 <= 5="" 31.0)="" if="" (feature="" <="0.0)" predict:="" 0.0="" else=""> 0.0)
Predict: 0.0
Else (feature 12 > 31.0)
If (feature 3 <= 3="" 4.0)="" predict:="" 0.0="" else="" (feature=""> 4.0)
Predict: 0.0
Tree 2 (weight 1.0):
If (feature 8 <= 4="" 6="" 1.0)="" if="" (feature="" <="2.0)" predict:="" 0.0="" else=""> 10875.0)
Predict: 1.0
Else (feature 6 > 2.0)
If (feature 1 <= 1="" 36.0)="" predict:="" 0.0="" else="" (feature=""> 36.0)
Predict: 1.0
Else (feature 8 > 1.0)
If (feature 5 <= 4="" 0.0)="" if="" (feature="" <="4113.0)" predict:="" 0.0="" else=""> 4113.0)
Predict: 1.0
Else (feature 5 > 0.0)
If (feature 11 <= 11="" 2.0)="" predict:="" 0.0="" else="" (feature=""> 2.0)
Predict: 0.0
Tree 3 ...
将其保存在某个.txt文件下,然后使用:https://github.com/tristaneljed/Decision-Tree-Visualization-Spark
答案 1 :(得分:0)
您可以获取所有叶节点的统计信息数量,例如杂质,增益,基尼系数,通过模型数据文件分类到每个标签中的元素数组。
数据文件位于保存模型/数据/的位置
model.save(location)
modeldf = spark.read.parquet(location+"data/*")
此文件包含决策树甚至randomForest所需的许多元数据。您可以提取所有所需的信息。
noderows = modeldf.select("id","prediction","leftChild","rightChild","split").collect()
df = pd.Dataframe([[rw['id'],rw['gain],rw['impurity'],rw['gini']] for rw in noderows if rw['leftChild'] < 0 and rw['rightChild'] < 0])
df.show()