我有一个矩阵,我想要计算 i 行和每隔一行之间的距离(让我们说欧几里德)(即我想要 i 成对距离矩阵的第一行)。
#include <Rcpp.h>
#include <cmath>
#include <algorithm>
#include <RcppParallel.h>
//#include <RcppArmadillo.h>
#include <queue>
using namespace std;
using namespace Rcpp;
using namespace RcppParallel;
// [[Rcpp::export]]
double dist_fun(NumericVector row1, NumericVector row2){
double rval = 0;
for (int i = 0; i < row1.length(); i++){
rval += (row1[i] - row2[i]) * (row1[i] - row2[i]);
}
return rval;
}
// [[Rcpp::export]]
NumericVector dist_row(NumericMatrix mat, int i){
NumericVector row(mat.nrow());
NumericMatrix::Row row1 = mat.row(i - 1);
for (int j = 0; j < mat.nrow(); j++){
NumericMatrix::Row row2 = mat.row(j);
row(j) = dist_fun(row1, row2);
}
return row;
}
// [[Rcpp::depends(RcppParallel)]]
struct JsDistance: public Worker {
// input matrix to read from
const NumericMatrix mat;
int i;
// output vector to write to
NumericVector output;
// initialize from Rcpp input and output matrixes (the RMatrix class
// can be automatically converted to from the Rcpp matrix type)
JsDistance(const NumericMatrix mat, int i, NumericVector output)
: mat(mat), i(i), output(output) {}
// function call operator that work for the specified range (begin/end)
void operator()(std::size_t begin, std::size_t end) {
NumericVector row1 = mat.row(i);
for (std::size_t j = begin; j < end; j++) {
NumericVector row2 = mat.row(j);
output[j] = dist_fun(row1, row2);
}
}
};
// [[Rcpp::export]]
NumericVector parallel_dist_row(NumericMatrix mat, int i) {
// allocate the matrix we will return
NumericVector output(mat.nrow());
// create the worker
JsDistance JsDistance(mat, i, output);
// call it with parallelFor
parallelFor(0, mat.nrow(), JsDistance);
return output;
}
使用Rcpp的顺序方式是函数&#39; row_dist&#39;如上所述。然而我想要使用的矩阵非常大,所以我想并行化它。但是后来我会遇到一个段错误,我不太明白为什么。要触发错误,您可以运行以下代码:
library(Rcpp)
library(RcppParallel)
setThreadOptions(numThreads = 20)
set.seed(42)
X = matrix(rnorm(10000 * 400), 10000, 400)
sourceCpp("question.cpp")
start1 = proc.time()
print(dist_row(X, 2)[1:30])
print(proc.time() - start1)
start2 = proc.time()
print(parallel_dist_row(X, 2)[1:30])
print(proc.time() - start2)
有人可以给我一些关于我做错的提示吗?提前感谢您的时间!
=============================================== ========================
编辑:
inline double d(double a, double b){
return fabs(a - b);
}
// [[Rcpp::depends(RcppParallel)]
struct dtwDistance: public Worker {
// Input matrix to read from must be of the RMatrix<T> form
// if using Rcpp objects
const RMatrix<double> mat;
int i;
// Output vector to write to must be of the RVector<T> form
// if using Rcpp objects
RVector<double> output;
// initialize from Rcpp input and output matrixes (the RMatrix class
// can be automatically converted to from the Rcpp matrix type)
dtwDistance(const NumericMatrix mat, int i, NumericVector output)
: mat(mat), i(i - 1), output(output) {}
// Note the -1 ^^^^ to match results from prior function
// Function call operator to iterate over a specified range (begin/end)
void operator()(std::size_t begin, std::size_t end) {
RMatrix<double>::Row row1 = mat.row(i);
for (std::size_t j = begin; j < end; ++j) {
RMatrix<double>::Row row2 = mat.row(j);
size_t n = row1.length();
size_t m = row2.length();
NumericMatrix cost(n + 1, m + 1);
for (int ii = 1; ii <= n; ii++){
cost(i, 0) = numeric_limits<double>::infinity();
}
for (int jj = 1; jj <= m; jj++){
cost(0, j) = numeric_limits<double>::infinity();
}
for (int ii = 1; ii <= n; ii++){
for (int jj = 1; jj <= m; jj++){
double dist = d(row1[ii - 1], row2[jj - 1]);
cost(ii, jj) = dist + min(min(cost(ii - 1, jj), cost(ii, jj - 1)), cost(ii - 1, jj - 1));
//cout << ii << ", " << jj << ", " << cost(ii, jj) << "\n";
}
}
output[j] = cost(n, m);
}
}
};
// [[Rcpp::export]]
NumericVector parallel_dist_row_dtw(NumericMatrix mat, int i) {
// allocate the matrix we will return
//RMatrix<double> input(mat);
NumericVector y(mat.nrow());
//RVector<double> output(y);
// create the worker
dtwDistance dtwDistance(mat, i, y);
// call it with parallelFor
parallelFor(0, mat.nrow(), dtwDistance);
return y;
}
我需要计算的距离是动态时间扭曲距离。我按上面的方式实现了它。然而,当跑步时,它会产生一堆不平衡。警告。几次运行后会出现段错误。我现在想知道问题是什么。
为了解决问题,我做了:
library(Rcpp)
library(RcppParallel)
setThreadOptions(numThreads = 4)
sourceCpp("scripts/chisq_dtw.cpp")
set.seed(42)
X = matrix(rnorm(1000), 100, 10)
parallel_dist_row_dtw(X, 1)
parallel_dist_row_dtw(X, 2)
parallel_dist_row_dtw(X, 3)
parallel_dist_row_dtw(X, 4)
parallel_dist_row_dtw(X, 5)
答案 0 :(得分:4)
问题是你是不通过RMatrix<T>
和RVector<T>
使用R对象周围的线程安全包装器。这些类很重要,因为并行化是在后台线程上执行的,后台线程是一个不能安全地调用R或Rcpp API的区域。 official documentation在Safe Accessors部分强调了这一点。
特别是,我们有:
为了安全方便地访问R向量和矩阵下面的数组,RcppParallel引入了几个访问器类:
RVector<T>
- 包裹各种类型的R矢量
RMatrix<T>
- 包装各种类型的R矩阵(还包括Row
和Column
类)要为Rcpp向量或矩阵创建线程安全访问器,只需使用它构造
RVector
或RMatrix
的实例。
因此,您可以通过将*Matrix
切换为RMatrix<T>
并将*Vector
切换为RVector<T>
来修复您的工作。
struct JsDistance: public Worker {
// Input matrix to read from must be of the RMatrix<T> form
// if using Rcpp objects
const RMatrix<double> mat;
int i;
// Output vector to write to must be of the RVector<T> form
// if using Rcpp objects
RVector<double> output;
// initialize from Rcpp input and output matrixes (the RMatrix class
// can be automatically converted to from the Rcpp matrix type)
JsDistance(const NumericMatrix mat, int i, NumericVector output)
: mat(mat), i(i - 1), output(output) {}
// Note the -1 ^^^^ to match results from prior function
// Function call operator to iterate over a specified range (begin/end)
void operator()(std::size_t begin, std::size_t end) {
RMatrix<double>::Row row1 = mat.row(i);
for (std::size_t j = begin; j < end; ++j) {
RMatrix<double>::Row row2 = mat.row(j);
double rval = 0;
for (unsigned int k = 0; k < row1.length(); ++k) {
rval += (row1[k] - row2[k]) * (row1[k] - row2[k]);
}
output[j] = rval;
}
}
};
特别是,这里使用的数据类型的格式为RMatrix<double>
,即使访问矩阵也是如此。
此外,在并行化版本中,缺少i-1
语句。为了解决这个问题,我选择在JSDistance
的构造函数中处理它。
set.seed(42)
X = matrix(rnorm(10000 * 400), 10000, 400)
start1 = proc.time()
print(dist_row(X, 2)[1:30])
# [1] 811.8873 0.0000 799.8153 810.1442 720.3232 730.6083 797.8441 781.8066 827.1511 834.1863 842.9392 850.2476 724.5842 673.1428 775.0994
# [16] 805.5752 804.9281 774.9770 799.7669 870.3187 815.1129 934.7581 726.1554 804.2097 758.4943 772.8931 806.6026 715.8257 847.8980 831.7555
print(proc.time() - start1)
# user system elapsed
# 0.22 0.00 0.23
start2 = proc.time()
print(parallel_dist_row(X, 2)[1:30])
# [1] 811.8873 0.0000 799.8153 810.1442 720.3232 730.6083 797.8441 781.8066 827.1511 834.1863 842.9392 850.2476 724.5842 673.1428 775.0994
# [16] 805.5752 804.9281 774.9770 799.7669 870.3187 815.1129 934.7581 726.1554 804.2097 758.4943 772.8931 806.6026 715.8257 847.8980 831.7555
print(proc.time() - start2)
# user system elapsed
# 0.28 0.00 0.06
all.equal(parallel_dist_row(X, 2), dist_row(X, 2))
# [1] TRUE