我需要对2D数组进行以下集成:
也就是说,网格中的每个点都得到值RC,它是在整个场与特定点(x,y)处的场 U 的值之间的差值的2D积分,乘以规范化内核,在1D版本中是:
到目前为止我所做的是对索引的低效迭代:
def normalized_bimodal_kernel_2D(x,y,a,x0=0.0,y0=0.0):
""" Gives a kernel that is zero in x=0, and its integral from -infty to
+infty is 1.0. The parameter a is a length scale where the peaks of the
function are."""
dist = (x-x0)**2 + (y-y0)**2
return (dist*np.exp(-(dist/a)))/(np.pi*a**2)
def RC_2D(U,a,dx):
nx,ny=U.shape
x,y = np.meshgrid(np.arange(0,nx, dx),np.arange(0,ny,dx), sparse=True)
UB = np.zeros_like(U)
for i in xrange(0,nx):
for j in xrange(0,ny):
field=(U-U[i,j])*normalized_bimodal_kernel_2D(x,y,a,x0=i*dx,y0=j*dx)
UB[i,j]=np.sum(field)*dx**2
return UB
def centerlizing_2D(U,a,dx):
nx,ny=U.shape
x,y = np.meshgrid(np.arange(0,nx, dx),np.arange(0,ny,dx), sparse=True)
UB = np.zeros((nx,ny,nx,ny))
for i in xrange(0,nx):
for j in xrange(0,ny):
UB[i,j]=normalized_bimodal_kernel_2D(x,y,a,x0=i*dx,y0=j*dx)
return UB
您可以在此处查看centeralizing
功能的结果:
U=np.eye(20)
plt.imshow(centerlizing(U,10,1)[10,10])
答案 0 :(得分:2)
normalized_bimodal_kernel_2D
,每个循环只移动它的小步骤。这复制了许多计算。
centerlizing_2D
的优化是为较大范围计算一次内核,然后定义UB
以将移位视图转换为该范围。这可以使用stride_tricks
,不幸的是它是相当先进的numpy。
def centerlizing_2D_opt(U,a,dx):
nx,ny=U.shape
x,y = np.meshgrid(np.arange(-nx//2, nx+nx//2, dx),
np.arange(-nx//2, ny+ny//2, dx), # note the increased range
sparse=True)
k = normalized_bimodal_kernel_2D(x, y, a, x0=nx//2, y0=ny//2)
sx, sy = k.strides
UB = as_strided(k, shape=(nx, ny, nx*2, ny*2), strides=(sy, sx, sx, sy))
return UB[:, :, nx:0:-1, ny:0:-1]
assert np.allclose(centerlizing_2D(U,10,1), centerlizing_2D_opt(U,10,1)) # verify it's correct
是的,它的速度更快:
%timeit centerlizing_2D(U,10,1) # 100 loops, best of 3: 9.88 ms per loop
%timeit centerlizing_2D_opt(U,10,1) # 10000 loops, best of 3: 85.9 µs per loop
接下来,我们通过使用优化的RC_2D
例程表达centerlizing_2D
来优化def RC_2D_opt(U,a,dx):
UB_tmp = centerlizing_2D_opt(U, a, dx)
U_tmp = U[:, :, None, None] - U[None, None, :, :]
UB = np.sum(U_tmp * UB_tmp, axis=(0, 1))
return UB
assert np.allclose(RC_2D(U,10,1), RC_2D_opt(U,10,1))
:
%timeit RC_2D(U,10, 1)
#original: 100 loops, best of 3: 13.8 ms per loop
#@DanielF's: 100 loops, best of 3: 6.98 ms per loop
#mine: 1000 loops, best of 3: 1.83 ms per loop
的表现:
'
答案 1 :(得分:1)
为了适合您的公式,让U
成为一个函数。
然后,您只需将x,y,x',y'
与np.ix_
放在四个不同的维度中,然后将您的公式翻译。 Numpy广播将完成其余的工作。
a=20
x,y,xp,yp=np.ix_(*[np.linspace(0,1,a)]*4)
def U(x,y) : return np.float32(x == y) # function "eye"
def f(x,y,xp,yp,a):
r2=(x-xp)**2+(y-yp)**2
return r2*np.exp(-r2/a)*(U(xp,yp) - U(x,y))/np.pi/a/a
#f(x,y,xp,yp,a).shape is (20, 20, 20, 20)
RC=f(x,y,xp,yp,a).sum(axis=(2,3))
#RC.shape is (20, 20)